| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| mptrcl.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → ¬ (𝐹‘𝑋) = ∅) | |
| 2 | mptrcl.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | dmmptss 6194 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
| 4 | 3 | sseli 3933 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝐴) |
| 5 | ndmfv 6859 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
| 6 | 4, 5 | nsyl4 158 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ 𝐴) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4286 ↦ cmpt 5176 dom cdm 5623 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: bitsval 16353 subcrcl 17741 initorcl 17915 termorcl 17916 zeroorcl 17917 submrcl 18694 issubg 19023 isnsg 19052 issubrng 20450 issubrg 20474 issdrg 20691 abvrcl 20716 isobs 21645 mhprcl 22046 islocfin 23420 kgeni 23440 elmptrab 23730 isphtpc 24909 cfili 25184 cfilfcls 25190 plybss 26115 eleenn 28859 neircl 48890 sectrcl 49008 invrcl 49010 isorcl 49019 sectpropdlem 49022 invpropdlem 49024 isopropdlem 49026 lmdrcl 49637 cmdrcl 49638 lmdfval2 49641 cmdfval2 49642 |
| Copyright terms: Public domain | W3C validator |