| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| mptrcl.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4306 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → ¬ (𝐹‘𝑋) = ∅) | |
| 2 | mptrcl.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | dmmptss 6217 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
| 4 | 3 | sseli 3945 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝐴) |
| 5 | ndmfv 6896 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
| 6 | 4, 5 | nsyl4 158 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ 𝐴) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: bitsval 16401 subcrcl 17785 initorcl 17959 termorcl 17960 zeroorcl 17961 submrcl 18736 issubg 19065 isnsg 19094 issubrng 20463 issubrg 20487 issdrg 20704 abvrcl 20729 isobs 21636 mhprcl 22037 islocfin 23411 kgeni 23431 elmptrab 23721 isphtpc 24900 cfili 25175 cfilfcls 25181 plybss 26106 eleenn 28830 neircl 48897 sectrcl 49015 invrcl 49017 isorcl 49026 sectpropdlem 49029 invpropdlem 49031 isopropdlem 49033 lmdrcl 49644 cmdrcl 49645 lmdfval2 49648 cmdfval2 49649 |
| Copyright terms: Public domain | W3C validator |