MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrcl Structured version   Visualization version   GIF version

Theorem mptrcl 6944
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptrcl (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑋(𝑥)

Proof of Theorem mptrcl
StepHypRef Expression
1 n0i 4289 . 2 (𝐼 ∈ (𝐹𝑋) → ¬ (𝐹𝑋) = ∅)
2 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
32dmmptss 6193 . . . 4 dom 𝐹𝐴
43sseli 3926 . . 3 (𝑋 ∈ dom 𝐹𝑋𝐴)
5 ndmfv 6860 . . 3 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
64, 5nsyl4 158 . 2 (¬ (𝐹𝑋) = ∅ → 𝑋𝐴)
71, 6syl 17 1 (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  c0 4282  cmpt 5174  dom cdm 5619  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494
This theorem is referenced by:  bitsval  16337  subcrcl  17725  initorcl  17899  termorcl  17900  zeroorcl  17901  submrcl  18712  issubg  19041  isnsg  19069  issubrng  20464  issubrg  20488  issdrg  20705  abvrcl  20730  isobs  21659  mhprcl  22059  islocfin  23433  kgeni  23453  elmptrab  23743  isphtpc  24921  cfili  25196  cfilfcls  25202  plybss  26127  eleenn  28876  neircl  49029  sectrcl  49147  invrcl  49149  isorcl  49158  sectpropdlem  49161  invpropdlem  49163  isopropdlem  49165  lmdrcl  49776  cmdrcl  49777  lmdfval2  49780  cmdfval2  49781
  Copyright terms: Public domain W3C validator