MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrcl Structured version   Visualization version   GIF version

Theorem mptrcl 6943
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptrcl (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑋(𝑥)

Proof of Theorem mptrcl
StepHypRef Expression
1 n0i 4293 . 2 (𝐼 ∈ (𝐹𝑋) → ¬ (𝐹𝑋) = ∅)
2 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
32dmmptss 6194 . . . 4 dom 𝐹𝐴
43sseli 3933 . . 3 (𝑋 ∈ dom 𝐹𝑋𝐴)
5 ndmfv 6859 . . 3 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
64, 5nsyl4 158 . 2 (¬ (𝐹𝑋) = ∅ → 𝑋𝐴)
71, 6syl 17 1 (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4286  cmpt 5176  dom cdm 5623  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494
This theorem is referenced by:  bitsval  16353  subcrcl  17741  initorcl  17915  termorcl  17916  zeroorcl  17917  submrcl  18694  issubg  19023  isnsg  19052  issubrng  20450  issubrg  20474  issdrg  20691  abvrcl  20716  isobs  21645  mhprcl  22046  islocfin  23420  kgeni  23440  elmptrab  23730  isphtpc  24909  cfili  25184  cfilfcls  25190  plybss  26115  eleenn  28859  neircl  48890  sectrcl  49008  invrcl  49010  isorcl  49019  sectpropdlem  49022  invpropdlem  49024  isopropdlem  49026  lmdrcl  49637  cmdrcl  49638  lmdfval2  49641  cmdfval2  49642
  Copyright terms: Public domain W3C validator