| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| mptrcl.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4290 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → ¬ (𝐹‘𝑋) = ∅) | |
| 2 | mptrcl.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | dmmptss 6188 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
| 4 | 3 | sseli 3930 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝐴) |
| 5 | ndmfv 6854 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
| 6 | 4, 5 | nsyl4 158 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ 𝐴) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4283 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: bitsval 16332 subcrcl 17720 initorcl 17894 termorcl 17895 zeroorcl 17896 submrcl 18707 issubg 19036 isnsg 19065 issubrng 20460 issubrg 20484 issdrg 20701 abvrcl 20726 isobs 21655 mhprcl 22056 islocfin 23430 kgeni 23450 elmptrab 23740 isphtpc 24918 cfili 25193 cfilfcls 25199 plybss 26124 eleenn 28872 neircl 48935 sectrcl 49053 invrcl 49055 isorcl 49064 sectpropdlem 49067 invpropdlem 49069 isopropdlem 49071 lmdrcl 49682 cmdrcl 49683 lmdfval2 49686 cmdfval2 49687 |
| Copyright terms: Public domain | W3C validator |