MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrcl Structured version   Visualization version   GIF version

Theorem mptrcl 6827
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptrcl (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑋(𝑥)

Proof of Theorem mptrcl
StepHypRef Expression
1 n0i 4248 . 2 (𝐼 ∈ (𝐹𝑋) → ¬ (𝐹𝑋) = ∅)
2 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
32dmmptss 6104 . . . 4 dom 𝐹𝐴
43sseli 3896 . . 3 (𝑋 ∈ dom 𝐹𝑋𝐴)
5 ndmfv 6747 . . 3 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
64, 5nsyl4 161 . 2 (¬ (𝐹𝑋) = ∅ → 𝑋𝐴)
71, 6syl 17 1 (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2110  c0 4237  cmpt 5135  dom cdm 5551  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fv 6388
This theorem is referenced by:  bitsval  15983  subcrcl  17321  initorcl  17496  termorcl  17497  zeroorcl  17498  submrcl  18229  issubg  18543  isnsg  18571  issubrg  19800  issdrg  19839  abvrcl  19857  isobs  20682  islocfin  22414  kgeni  22434  elmptrab  22724  isphtpc  23891  cfili  24165  cfilfcls  24171  plybss  25088  eleenn  26987  neircl  45871
  Copyright terms: Public domain W3C validator