Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
mptrcl.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4280 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → ¬ (𝐹‘𝑋) = ∅) | |
2 | mptrcl.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | dmmptss 6179 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
4 | 3 | sseli 3928 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝐴) |
5 | ndmfv 6860 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
6 | 4, 5 | nsyl4 158 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ 𝐴) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ∅c0 4269 ↦ cmpt 5175 dom cdm 5620 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fv 6487 |
This theorem is referenced by: bitsval 16230 subcrcl 17625 initorcl 17802 termorcl 17803 zeroorcl 17804 submrcl 18538 issubg 18851 isnsg 18879 issubrg 20129 issdrg 20168 abvrcl 20187 isobs 21033 islocfin 22774 kgeni 22794 elmptrab 23084 isphtpc 24263 cfili 24538 cfilfcls 24544 plybss 25461 eleenn 27553 neircl 46549 |
Copyright terms: Public domain | W3C validator |