![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
mptrcl.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptrcl | ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4333 | . 2 ⊢ (𝐼 ∈ (𝐹‘𝑋) → ¬ (𝐹‘𝑋) = ∅) | |
2 | mptrcl.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | dmmptss 6240 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
4 | 3 | sseli 3978 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝐴) |
5 | ndmfv 6926 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
6 | 4, 5 | nsyl4 158 | . 2 ⊢ (¬ (𝐹‘𝑋) = ∅ → 𝑋 ∈ 𝐴) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐼 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4322 ↦ cmpt 5231 dom cdm 5676 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fv 6551 |
This theorem is referenced by: bitsval 16369 subcrcl 17767 initorcl 17944 termorcl 17945 zeroorcl 17946 submrcl 18719 issubg 19042 isnsg 19071 issubrng 20435 issubrg 20461 issdrg 20547 abvrcl 20572 isobs 21494 islocfin 23241 kgeni 23261 elmptrab 23551 isphtpc 24734 cfili 25009 cfilfcls 25015 plybss 25932 eleenn 28409 neircl 47625 |
Copyright terms: Public domain | W3C validator |