Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvco2 Structured version   Visualization version   GIF version

Theorem afvco2 44555
Description: Value of a function composition, analogous to fvco2 6847. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
afvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))

Proof of Theorem afvco2
StepHypRef Expression
1 fvco2 6847 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
21adantl 481 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
3 simpll 763 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺𝑋) ∈ dom 𝐹)
4 df-fn 6421 . . . . . . . . 9 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
5 simpll 763 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → Fun 𝐺)
6 eleq2 2827 . . . . . . . . . . . . . 14 (𝐴 = dom 𝐺 → (𝑋𝐴𝑋 ∈ dom 𝐺))
76eqcoms 2746 . . . . . . . . . . . . 13 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
87biimpd 228 . . . . . . . . . . . 12 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
98adantl 481 . . . . . . . . . . 11 ((Fun 𝐺 ∧ dom 𝐺 = 𝐴) → (𝑋𝐴𝑋 ∈ dom 𝐺))
109imp 406 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
115, 10jca 511 . . . . . . . . 9 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
124, 11sylanb 580 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
1312adantl 481 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (Fun 𝐺𝑋 ∈ dom 𝐺))
14 dmfco 6846 . . . . . . 7 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
1513, 14syl 17 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
163, 15mpbird 256 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → 𝑋 ∈ dom (𝐹𝐺))
17 funcoressn 44423 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
18 df-dfat 44498 . . . . . 6 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})))
19 afvfundmfveq 44517 . . . . . 6 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2018, 19sylbir 234 . . . . 5 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2116, 17, 20syl2anc 583 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
22 df-dfat 44498 . . . . . 6 (𝐹 defAt (𝐺𝑋) ↔ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})))
23 afvfundmfveq 44517 . . . . . 6 (𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2422, 23sylbir 234 . . . . 5 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2524adantr 480 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
262, 21, 253eqtr4d 2788 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
27 ianor 978 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ↔ (¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})))
2814funfni 6523 . . . . . . . . . . 11 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
2928bicomd 222 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺)))
3029notbid 317 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom (𝐹𝐺)))
3130biimpd 228 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom (𝐹𝐺)))
32 ndmafv 44519 . . . . . . . 8 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)'''𝑋) = V)
3331, 32syl6com 37 . . . . . . 7 (¬ (𝐺𝑋) ∈ dom 𝐹 → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
34 funressnfv 44424 . . . . . . . . . . . 12 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
3534ex 412 . . . . . . . . . . 11 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
36 afvnfundmuv 44518 . . . . . . . . . . . 12 (¬ (𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = V)
3718, 36sylnbir 330 . . . . . . . . . . 11 (¬ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = V)
3835, 37nsyl4 158 . . . . . . . . . 10 (¬ ((𝐹𝐺)'''𝑋) = V → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
3938com12 32 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ ((𝐹𝐺)'''𝑋) = V → Fun (𝐹 ↾ {(𝐺𝑋)})))
4039con1d 145 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐹𝐺)'''𝑋) = V))
4140com12 32 . . . . . . 7 (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4233, 41jaoi 853 . . . . . 6 ((¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4327, 42sylbi 216 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4443imp 406 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = V)
45 afvnfundmuv 44518 . . . . . . 7 𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = V)
4622, 45sylnbir 330 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = V)
4746eqcomd 2744 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → V = (𝐹'''(𝐺𝑋)))
4847adantr 480 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → V = (𝐹'''(𝐺𝑋)))
4944, 48eqtrd 2778 . . 3 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
5026, 49pm2.61ian 808 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
51 eqidd 2739 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → 𝐹 = 𝐹)
524, 9sylbi 216 . . . . . 6 (𝐺 Fn 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
5352imp 406 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋 ∈ dom 𝐺)
54 fnfun 6517 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
5554funresd 6461 . . . . . 6 (𝐺 Fn 𝐴 → Fun (𝐺 ↾ {𝑋}))
5655adantr 480 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐺 ↾ {𝑋}))
57 df-dfat 44498 . . . . . 6 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
58 afvfundmfveq 44517 . . . . . 6 (𝐺 defAt 𝑋 → (𝐺'''𝑋) = (𝐺𝑋))
5957, 58sylbir 234 . . . . 5 ((𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})) → (𝐺'''𝑋) = (𝐺𝑋))
6053, 56, 59syl2anc 583 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺'''𝑋) = (𝐺𝑋))
6160eqcomd 2744 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) = (𝐺'''𝑋))
6251, 61afveq12d 44512 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹'''(𝐺𝑋)) = (𝐹'''(𝐺'''𝑋)))
6350, 62eqtrd 2778 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  dom cdm 5580  cres 5582  ccom 5584  Fun wfun 6412   Fn wfn 6413  cfv 6418   defAt wdfat 44495  '''cafv 44496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator