Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvco2 Structured version   Visualization version   GIF version

Theorem afvco2 43252
Description: Value of a function composition, analogous to fvco2 6751. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
afvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))

Proof of Theorem afvco2
StepHypRef Expression
1 fvco2 6751 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
21adantl 482 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
3 simpll 763 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺𝑋) ∈ dom 𝐹)
4 df-fn 6351 . . . . . . . . 9 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
5 simpll 763 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → Fun 𝐺)
6 eleq2 2898 . . . . . . . . . . . . . 14 (𝐴 = dom 𝐺 → (𝑋𝐴𝑋 ∈ dom 𝐺))
76eqcoms 2826 . . . . . . . . . . . . 13 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
87biimpd 230 . . . . . . . . . . . 12 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
98adantl 482 . . . . . . . . . . 11 ((Fun 𝐺 ∧ dom 𝐺 = 𝐴) → (𝑋𝐴𝑋 ∈ dom 𝐺))
109imp 407 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
115, 10jca 512 . . . . . . . . 9 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
124, 11sylanb 581 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
1312adantl 482 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (Fun 𝐺𝑋 ∈ dom 𝐺))
14 dmfco 6750 . . . . . . 7 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
1513, 14syl 17 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
163, 15mpbird 258 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → 𝑋 ∈ dom (𝐹𝐺))
17 funcoressn 43154 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
18 df-dfat 43195 . . . . . 6 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})))
19 afvfundmfveq 43214 . . . . . 6 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2018, 19sylbir 236 . . . . 5 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2116, 17, 20syl2anc 584 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
22 df-dfat 43195 . . . . . 6 (𝐹 defAt (𝐺𝑋) ↔ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})))
23 afvfundmfveq 43214 . . . . . 6 (𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2422, 23sylbir 236 . . . . 5 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2524adantr 481 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
262, 21, 253eqtr4d 2863 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
27 ianor 975 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ↔ (¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})))
2814funfni 6450 . . . . . . . . . . 11 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
2928bicomd 224 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺)))
3029notbid 319 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom (𝐹𝐺)))
3130biimpd 230 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom (𝐹𝐺)))
32 ndmafv 43216 . . . . . . . 8 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)'''𝑋) = V)
3331, 32syl6com 37 . . . . . . 7 (¬ (𝐺𝑋) ∈ dom 𝐹 → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
34 funressnfv 43155 . . . . . . . . . . . 12 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
3534ex 413 . . . . . . . . . . 11 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
36 afvnfundmuv 43215 . . . . . . . . . . . 12 (¬ (𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = V)
3718, 36sylnbir 332 . . . . . . . . . . 11 (¬ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = V)
3835, 37nsyl4 161 . . . . . . . . . 10 (¬ ((𝐹𝐺)'''𝑋) = V → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
3938com12 32 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ ((𝐹𝐺)'''𝑋) = V → Fun (𝐹 ↾ {(𝐺𝑋)})))
4039con1d 147 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐹𝐺)'''𝑋) = V))
4140com12 32 . . . . . . 7 (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4233, 41jaoi 851 . . . . . 6 ((¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4327, 42sylbi 218 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4443imp 407 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = V)
45 afvnfundmuv 43215 . . . . . . 7 𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = V)
4622, 45sylnbir 332 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = V)
4746eqcomd 2824 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → V = (𝐹'''(𝐺𝑋)))
4847adantr 481 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → V = (𝐹'''(𝐺𝑋)))
4944, 48eqtrd 2853 . . 3 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
5026, 49pm2.61ian 808 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
51 eqidd 2819 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → 𝐹 = 𝐹)
524, 9sylbi 218 . . . . . 6 (𝐺 Fn 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
5352imp 407 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋 ∈ dom 𝐺)
54 fnfun 6446 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
55 funres 6390 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ↾ {𝑋}))
5654, 55syl 17 . . . . . 6 (𝐺 Fn 𝐴 → Fun (𝐺 ↾ {𝑋}))
5756adantr 481 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐺 ↾ {𝑋}))
58 df-dfat 43195 . . . . . 6 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
59 afvfundmfveq 43214 . . . . . 6 (𝐺 defAt 𝑋 → (𝐺'''𝑋) = (𝐺𝑋))
6058, 59sylbir 236 . . . . 5 ((𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})) → (𝐺'''𝑋) = (𝐺𝑋))
6153, 57, 60syl2anc 584 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺'''𝑋) = (𝐺𝑋))
6261eqcomd 2824 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) = (𝐺'''𝑋))
6351, 62afveq12d 43209 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹'''(𝐺𝑋)) = (𝐹'''(𝐺'''𝑋)))
6450, 63eqtrd 2853 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  Vcvv 3492  {csn 4557  dom cdm 5548  cres 5550  ccom 5552  Fun wfun 6342   Fn wfn 6343  cfv 6348   defAt wdfat 43192  '''cafv 43193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-aiota 43162  df-dfat 43195  df-afv 43196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator