Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvco2 Structured version   Visualization version   GIF version

Theorem afvco2 47170
Description: Value of a function composition, analogous to fvco2 6940. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
afvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))

Proof of Theorem afvco2
StepHypRef Expression
1 fvco2 6940 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
21adantl 481 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
3 simpll 766 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺𝑋) ∈ dom 𝐹)
4 df-fn 6502 . . . . . . . . 9 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
5 simpll 766 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → Fun 𝐺)
6 eleq2 2817 . . . . . . . . . . . . . 14 (𝐴 = dom 𝐺 → (𝑋𝐴𝑋 ∈ dom 𝐺))
76eqcoms 2737 . . . . . . . . . . . . 13 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
87biimpd 229 . . . . . . . . . . . 12 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
98adantl 481 . . . . . . . . . . 11 ((Fun 𝐺 ∧ dom 𝐺 = 𝐴) → (𝑋𝐴𝑋 ∈ dom 𝐺))
109imp 406 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
115, 10jca 511 . . . . . . . . 9 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
124, 11sylanb 581 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
1312adantl 481 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (Fun 𝐺𝑋 ∈ dom 𝐺))
14 dmfco 6939 . . . . . . 7 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
1513, 14syl 17 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
163, 15mpbird 257 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → 𝑋 ∈ dom (𝐹𝐺))
17 funcoressn 47036 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
18 df-dfat 47113 . . . . . 6 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})))
19 afvfundmfveq 47132 . . . . . 6 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2018, 19sylbir 235 . . . . 5 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2116, 17, 20syl2anc 584 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
22 df-dfat 47113 . . . . . 6 (𝐹 defAt (𝐺𝑋) ↔ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})))
23 afvfundmfveq 47132 . . . . . 6 (𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2422, 23sylbir 235 . . . . 5 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2524adantr 480 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
262, 21, 253eqtr4d 2774 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
27 ianor 983 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ↔ (¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})))
2814funfni 6606 . . . . . . . . . . 11 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
2928bicomd 223 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺)))
3029notbid 318 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom (𝐹𝐺)))
3130biimpd 229 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom (𝐹𝐺)))
32 ndmafv 47134 . . . . . . . 8 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)'''𝑋) = V)
3331, 32syl6com 37 . . . . . . 7 (¬ (𝐺𝑋) ∈ dom 𝐹 → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
34 funressnfv 47037 . . . . . . . . . . . 12 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
3534ex 412 . . . . . . . . . . 11 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
36 afvnfundmuv 47133 . . . . . . . . . . . 12 (¬ (𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = V)
3718, 36sylnbir 331 . . . . . . . . . . 11 (¬ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = V)
3835, 37nsyl4 158 . . . . . . . . . 10 (¬ ((𝐹𝐺)'''𝑋) = V → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
3938com12 32 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ ((𝐹𝐺)'''𝑋) = V → Fun (𝐹 ↾ {(𝐺𝑋)})))
4039con1d 145 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐹𝐺)'''𝑋) = V))
4140com12 32 . . . . . . 7 (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4233, 41jaoi 857 . . . . . 6 ((¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4327, 42sylbi 217 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4443imp 406 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = V)
45 afvnfundmuv 47133 . . . . . . 7 𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = V)
4622, 45sylnbir 331 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = V)
4746eqcomd 2735 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → V = (𝐹'''(𝐺𝑋)))
4847adantr 480 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → V = (𝐹'''(𝐺𝑋)))
4944, 48eqtrd 2764 . . 3 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
5026, 49pm2.61ian 811 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
51 eqidd 2730 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → 𝐹 = 𝐹)
524, 9sylbi 217 . . . . . 6 (𝐺 Fn 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
5352imp 406 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋 ∈ dom 𝐺)
54 fnfun 6600 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
5554funresd 6543 . . . . . 6 (𝐺 Fn 𝐴 → Fun (𝐺 ↾ {𝑋}))
5655adantr 480 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐺 ↾ {𝑋}))
57 df-dfat 47113 . . . . . 6 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
58 afvfundmfveq 47132 . . . . . 6 (𝐺 defAt 𝑋 → (𝐺'''𝑋) = (𝐺𝑋))
5957, 58sylbir 235 . . . . 5 ((𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})) → (𝐺'''𝑋) = (𝐺𝑋))
6053, 56, 59syl2anc 584 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺'''𝑋) = (𝐺𝑋))
6160eqcomd 2735 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) = (𝐺'''𝑋))
6251, 61afveq12d 47127 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹'''(𝐺𝑋)) = (𝐹'''(𝐺'''𝑋)))
6350, 62eqtrd 2764 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  dom cdm 5631  cres 5633  ccom 5635  Fun wfun 6493   Fn wfn 6494  cfv 6499   defAt wdfat 47110  '''cafv 47111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-aiota 47079  df-dfat 47113  df-afv 47114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator