Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldfld | Structured version Visualization version GIF version |
Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
ofldfld | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 31403 | . 2 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Fieldcfield 19907 oRingcorng 31396 oFieldcofld 31397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ofld 31399 |
This theorem is referenced by: ofldlt1 31414 ofldchr 31415 |
Copyright terms: Public domain | W3C validator |