MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofldfld Structured version   Visualization version   GIF version

Theorem ofldfld 20789
Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldfld (𝐹 ∈ oField → 𝐹 ∈ Field)

Proof of Theorem ofldfld
StepHypRef Expression
1 isofld 20781 . 2 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simplbi 497 1 (𝐹 ∈ oField → 𝐹 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Fieldcfield 20647  oRingcorng 20774  oFieldcofld 20775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-ofld 20777
This theorem is referenced by:  ofldlt1  20792  ofldchr  21515
  Copyright terms: Public domain W3C validator