Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldfld Structured version   Visualization version   GIF version

Theorem ofldfld 33288
Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldfld (𝐹 ∈ oField → 𝐹 ∈ Field)

Proof of Theorem ofldfld
StepHypRef Expression
1 isofld 33280 . 2 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simplbi 497 1 (𝐹 ∈ oField → 𝐹 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Fieldcfield 20639  oRingcorng 33273  oFieldcofld 33274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ofld 33276
This theorem is referenced by:  ofldlt1  33291  ofldchr  33292
  Copyright terms: Public domain W3C validator