Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldlt1 | Structured version Visualization version GIF version |
Description: In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
Ref | Expression |
---|---|
ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 31501 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2738 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
6 | 3, 4, 5 | orng0le1 31511 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
8 | ofldfld 31509 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
9 | isfld 20000 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
10 | 9 | simplbi 498 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
11 | 3, 4 | drngunz 20006 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
13 | 12 | necomd 2999 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
14 | 3 | fvexi 6788 | . . 3 ⊢ 0 ∈ V |
15 | 4 | fvexi 6788 | . . 3 ⊢ 1 ∈ V |
16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
17 | 5, 16 | pltval 18050 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
18 | 14, 15, 17 | mp3an23 1452 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
19 | 7, 13, 18 | mpbir2and 710 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 lecple 16969 0gc0g 17150 ltcplt 18026 1rcur 19737 CRingccrg 19784 DivRingcdr 19991 Fieldcfield 19992 oRingcorng 31494 oFieldcofld 31495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-toset 18135 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-drng 19993 df-field 19994 df-omnd 31325 df-ogrp 31326 df-orng 31496 df-ofld 31497 |
This theorem is referenced by: ofldchr 31513 isarchiofld 31516 |
Copyright terms: Public domain | W3C validator |