| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofldlt1 | Structured version Visualization version GIF version | ||
| Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
| orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
| ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
| Ref | Expression |
|---|---|
| ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 20779 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | eqid 2731 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 6 | 3, 4, 5 | orng0le1 20789 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
| 8 | ofldfld 20787 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
| 9 | isfld 20655 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 11 | 3, 4 | drngunz 20662 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
| 12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
| 13 | 12 | necomd 2983 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
| 14 | 3 | fvexi 6836 | . . 3 ⊢ 0 ∈ V |
| 15 | 4 | fvexi 6836 | . . 3 ⊢ 1 ∈ V |
| 16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
| 17 | 5, 16 | pltval 18236 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 18 | 14, 15, 17 | mp3an23 1455 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 19 | 7, 13, 18 | mpbir2and 713 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 class class class wbr 5089 ‘cfv 6481 lecple 17168 0gc0g 17343 ltcplt 18214 1rcur 20099 CRingccrg 20152 DivRingcdr 20644 Fieldcfield 20645 oRingcorng 20772 oFieldcofld 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-toset 18321 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19694 df-abl 19695 df-omnd 20033 df-ogrp 20034 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-drng 20646 df-field 20647 df-orng 20774 df-ofld 20775 |
| This theorem is referenced by: ofldchr 21513 isarchiofld 33168 |
| Copyright terms: Public domain | W3C validator |