![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldlt1 | Structured version Visualization version GIF version |
Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
Ref | Expression |
---|---|
ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 33312 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2735 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
6 | 3, 4, 5 | orng0le1 33322 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
8 | ofldfld 33320 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
9 | isfld 20757 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
11 | 3, 4 | drngunz 20764 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
13 | 12 | necomd 2994 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
14 | 3 | fvexi 6921 | . . 3 ⊢ 0 ∈ V |
15 | 4 | fvexi 6921 | . . 3 ⊢ 1 ∈ V |
16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
17 | 5, 16 | pltval 18390 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
18 | 14, 15, 17 | mp3an23 1452 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
19 | 7, 13, 18 | mpbir2and 713 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 class class class wbr 5148 ‘cfv 6563 lecple 17305 0gc0g 17486 ltcplt 18366 1rcur 20199 CRingccrg 20252 DivRingcdr 20746 Fieldcfield 20747 oRingcorng 33305 oFieldcofld 33306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-0g 17488 df-proset 18352 df-poset 18371 df-plt 18388 df-toset 18475 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-drng 20748 df-field 20749 df-omnd 33059 df-ogrp 33060 df-orng 33307 df-ofld 33308 |
This theorem is referenced by: ofldchr 33324 isarchiofld 33327 |
Copyright terms: Public domain | W3C validator |