| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldlt1 | Structured version Visualization version GIF version | ||
| Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
| orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
| ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
| Ref | Expression |
|---|---|
| ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 33253 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | eqid 2729 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 6 | 3, 4, 5 | orng0le1 33263 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
| 8 | ofldfld 33261 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
| 9 | isfld 20625 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 11 | 3, 4 | drngunz 20632 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
| 12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
| 13 | 12 | necomd 2980 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
| 14 | 3 | fvexi 6854 | . . 3 ⊢ 0 ∈ V |
| 15 | 4 | fvexi 6854 | . . 3 ⊢ 1 ∈ V |
| 16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
| 17 | 5, 16 | pltval 18267 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 18 | 14, 15, 17 | mp3an23 1455 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 19 | 7, 13, 18 | mpbir2and 713 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 class class class wbr 5102 ‘cfv 6499 lecple 17203 0gc0g 17378 ltcplt 18245 1rcur 20066 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 oRingcorng 33246 oFieldcofld 33247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-toset 18352 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-drng 20616 df-field 20617 df-omnd 32986 df-ogrp 32987 df-orng 33248 df-ofld 33249 |
| This theorem is referenced by: ofldchr 33265 isarchiofld 33268 |
| Copyright terms: Public domain | W3C validator |