| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldlt1 | Structured version Visualization version GIF version | ||
| Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
| orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
| ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
| Ref | Expression |
|---|---|
| ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 33280 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | eqid 2729 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 6 | 3, 4, 5 | orng0le1 33290 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
| 8 | ofldfld 33288 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
| 9 | isfld 20649 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 11 | 3, 4 | drngunz 20656 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
| 12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
| 13 | 12 | necomd 2980 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
| 14 | 3 | fvexi 6872 | . . 3 ⊢ 0 ∈ V |
| 15 | 4 | fvexi 6872 | . . 3 ⊢ 1 ∈ V |
| 16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
| 17 | 5, 16 | pltval 18291 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 18 | 14, 15, 17 | mp3an23 1455 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
| 19 | 7, 13, 18 | mpbir2and 713 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 lecple 17227 0gc0g 17402 ltcplt 18269 1rcur 20090 CRingccrg 20143 DivRingcdr 20638 Fieldcfield 20639 oRingcorng 33273 oFieldcofld 33274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-0g 17404 df-proset 18255 df-poset 18274 df-plt 18289 df-toset 18376 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-drng 20640 df-field 20641 df-omnd 33013 df-ogrp 33014 df-orng 33275 df-ofld 33276 |
| This theorem is referenced by: ofldchr 33292 isarchiofld 33295 |
| Copyright terms: Public domain | W3C validator |