Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldlt1 | Structured version Visualization version GIF version |
Description: In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
orng0le1.1 | ⊢ 0 = (0g‘𝐹) |
orng0le1.2 | ⊢ 1 = (1r‘𝐹) |
ofld0lt1.3 | ⊢ < = (lt‘𝐹) |
Ref | Expression |
---|---|
ofldlt1 | ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 31403 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orng0le1.1 | . . . 4 ⊢ 0 = (0g‘𝐹) | |
4 | orng0le1.2 | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2738 | . . . 4 ⊢ (le‘𝐹) = (le‘𝐹) | |
6 | 3, 4, 5 | orng0le1 31413 | . . 3 ⊢ (𝐹 ∈ oRing → 0 (le‘𝐹) 1 ) |
7 | 2, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ oField → 0 (le‘𝐹) 1 ) |
8 | ofldfld 31411 | . . . 4 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | |
9 | isfld 19915 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
11 | 3, 4 | drngunz 19921 | . . . 4 ⊢ (𝐹 ∈ DivRing → 1 ≠ 0 ) |
12 | 8, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ oField → 1 ≠ 0 ) |
13 | 12 | necomd 2998 | . 2 ⊢ (𝐹 ∈ oField → 0 ≠ 1 ) |
14 | 3 | fvexi 6770 | . . 3 ⊢ 0 ∈ V |
15 | 4 | fvexi 6770 | . . 3 ⊢ 1 ∈ V |
16 | ofld0lt1.3 | . . . 4 ⊢ < = (lt‘𝐹) | |
17 | 5, 16 | pltval 17965 | . . 3 ⊢ ((𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V) → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
18 | 14, 15, 17 | mp3an23 1451 | . 2 ⊢ (𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 (le‘𝐹) 1 ∧ 0 ≠ 1 ))) |
19 | 7, 13, 18 | mpbir2and 709 | 1 ⊢ (𝐹 ∈ oField → 0 < 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 lecple 16895 0gc0g 17067 ltcplt 17941 1rcur 19652 CRingccrg 19699 DivRingcdr 19906 Fieldcfield 19907 oRingcorng 31396 oFieldcofld 31397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-proset 17928 df-poset 17946 df-plt 17963 df-toset 18050 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-drng 19908 df-field 19909 df-omnd 31227 df-ogrp 31228 df-orng 31398 df-ofld 31399 |
This theorem is referenced by: ofldchr 31415 isarchiofld 31418 |
Copyright terms: Public domain | W3C validator |