| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofldtos | Structured version Visualization version GIF version | ||
| Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 20781 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orngogrp 20780 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
| 4 | isogrp 20038 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
| 6 | omndtos 20041 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
| 7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Tosetctos 18322 Grpcgrp 18848 oMndcomnd 20033 oGrpcogrp 20034 Fieldcfield 20647 oRingcorng 20774 oFieldcofld 20775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-omnd 20035 df-ogrp 20036 df-orng 20776 df-ofld 20777 |
| This theorem is referenced by: ofldchr 21515 |
| Copyright terms: Public domain | W3C validator |