| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version | ||
| Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 33280 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orngogrp 33279 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
| 4 | isogrp 33016 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
| 6 | omndtos 33019 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
| 7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Tosetctos 18375 Grpcgrp 18865 Fieldcfield 20639 oMndcomnd 33011 oGrpcogrp 33012 oRingcorng 33273 oFieldcofld 33274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-omnd 33013 df-ogrp 33014 df-orng 33275 df-ofld 33276 |
| This theorem is referenced by: ofldchr 33292 |
| Copyright terms: Public domain | W3C validator |