Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 33338
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 33329 . . 3 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . 2 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 33328 . 2 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 33075 . . 3 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . 2 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
6 omndtos 33078 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
72, 3, 5, 64syl 19 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Tosetctos 18431  Grpcgrp 18921  Fieldcfield 20695  oMndcomnd 33070  oGrpcogrp 33071  oRingcorng 33322  oFieldcofld 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-omnd 33072  df-ogrp 33073  df-orng 33324  df-ofld 33325
This theorem is referenced by:  ofldchr  33341
  Copyright terms: Public domain W3C validator