Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 33289
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 33280 . . 3 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . 2 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 33279 . 2 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 33016 . . 3 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . 2 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
6 omndtos 33019 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
72, 3, 5, 64syl 19 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Tosetctos 18375  Grpcgrp 18865  Fieldcfield 20639  oMndcomnd 33011  oGrpcogrp 33012  oRingcorng 33273  oFieldcofld 33274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-omnd 33013  df-ogrp 33014  df-orng 33275  df-ofld 33276
This theorem is referenced by:  ofldchr  33292
  Copyright terms: Public domain W3C validator