Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 31412
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 31403 . . . 4 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . . 3 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 31402 . . 3 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 31230 . . . 4 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . . 3 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
62, 3, 53syl 18 . 2 (𝐹 ∈ oField → 𝐹 ∈ oMnd)
7 omndtos 31233 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
86, 7syl 17 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Tosetctos 18049  Grpcgrp 18492  Fieldcfield 19907  oMndcomnd 31225  oGrpcogrp 31226  oRingcorng 31396  oFieldcofld 31397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-omnd 31227  df-ogrp 31228  df-orng 31398  df-ofld 31399
This theorem is referenced by:  ofldchr  31415
  Copyright terms: Public domain W3C validator