| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version | ||
| Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 33333 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orngogrp 33332 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
| 4 | isogrp 33080 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
| 6 | omndtos 33083 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
| 7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Tosetctos 18462 Grpcgrp 18952 Fieldcfield 20731 oMndcomnd 33075 oGrpcogrp 33076 oRingcorng 33326 oFieldcofld 33327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-omnd 33077 df-ogrp 33078 df-orng 33328 df-ofld 33329 |
| This theorem is referenced by: ofldchr 33345 |
| Copyright terms: Public domain | W3C validator |