![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version |
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 33312 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orngogrp 33311 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
4 | isogrp 33062 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
6 | omndtos 33065 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Tosetctos 18474 Grpcgrp 18964 Fieldcfield 20747 oMndcomnd 33057 oGrpcogrp 33058 oRingcorng 33305 oFieldcofld 33306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-omnd 33059 df-ogrp 33060 df-orng 33307 df-ofld 33308 |
This theorem is referenced by: ofldchr 33324 |
Copyright terms: Public domain | W3C validator |