MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 20790
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 20781 . . 3 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . 2 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 20780 . 2 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 20038 . . 3 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . 2 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
6 omndtos 20041 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
72, 3, 5, 64syl 19 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Tosetctos 18322  Grpcgrp 18848  oMndcomnd 20033  oGrpcogrp 20034  Fieldcfield 20647  oRingcorng 20774  oFieldcofld 20775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-omnd 20035  df-ogrp 20036  df-orng 20776  df-ofld 20777
This theorem is referenced by:  ofldchr  21515
  Copyright terms: Public domain W3C validator