| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofldtos | Structured version Visualization version GIF version | ||
| Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld 20780 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 3 | orngogrp 20779 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
| 4 | isogrp 20037 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
| 6 | omndtos 20040 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
| 7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Tosetctos 18320 Grpcgrp 18846 oMndcomnd 20032 oGrpcogrp 20033 Fieldcfield 20646 oRingcorng 20773 oFieldcofld 20774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-omnd 20034 df-ogrp 20035 df-orng 20775 df-ofld 20776 |
| This theorem is referenced by: ofldchr 21514 |
| Copyright terms: Public domain | W3C validator |