![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version |
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 33185 | . . 3 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 495 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orngogrp 33184 | . 2 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
4 | isogrp 32941 | . . 3 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
5 | 4 | simprbi 495 | . 2 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
6 | omndtos 32944 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
7 | 2, 3, 5, 6 | 4syl 19 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Tosetctos 18436 Grpcgrp 18923 Fieldcfield 20704 oMndcomnd 32936 oGrpcogrp 32937 oRingcorng 33178 oFieldcofld 33179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-ov 7419 df-omnd 32938 df-ogrp 32939 df-orng 33180 df-ofld 33181 |
This theorem is referenced by: ofldchr 33197 |
Copyright terms: Public domain | W3C validator |