![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version |
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 32408 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orngogrp 32407 | . . 3 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
4 | isogrp 32207 | . . . 4 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oMnd) |
7 | omndtos 32210 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Tosetctos 18365 Grpcgrp 18815 Fieldcfield 20308 oMndcomnd 32202 oGrpcogrp 32203 oRingcorng 32401 oFieldcofld 32402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-omnd 32204 df-ogrp 32205 df-orng 32403 df-ofld 32404 |
This theorem is referenced by: ofldchr 32420 |
Copyright terms: Public domain | W3C validator |