Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 33306
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 33297 . . 3 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . 2 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 33296 . 2 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 33052 . . 3 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . 2 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
6 omndtos 33055 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
72, 3, 5, 64syl 19 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Tosetctos 18486  Grpcgrp 18973  Fieldcfield 20752  oMndcomnd 33047  oGrpcogrp 33048  oRingcorng 33290  oFieldcofld 33291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-omnd 33049  df-ogrp 33050  df-orng 33292  df-ofld 33293
This theorem is referenced by:  ofldchr  33309
  Copyright terms: Public domain W3C validator