Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 33050
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 33041 . . . 4 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 495 . . 3 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 33040 . . 3 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 32803 . . . 4 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 495 . . 3 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
62, 3, 53syl 18 . 2 (𝐹 ∈ oField → 𝐹 ∈ oMnd)
7 omndtos 32806 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
86, 7syl 17 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Tosetctos 18415  Grpcgrp 18897  Fieldcfield 20632  oMndcomnd 32798  oGrpcogrp 32799  oRingcorng 33034  oFieldcofld 33035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-omnd 32800  df-ogrp 32801  df-orng 33036  df-ofld 33037
This theorem is referenced by:  ofldchr  33053
  Copyright terms: Public domain W3C validator