Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldtos Structured version   Visualization version   GIF version

Theorem ofldtos 33342
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
ofldtos (𝐹 ∈ oField → 𝐹 ∈ Toset)

Proof of Theorem ofldtos
StepHypRef Expression
1 isofld 33333 . . 3 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
21simprbi 496 . 2 (𝐹 ∈ oField → 𝐹 ∈ oRing)
3 orngogrp 33332 . 2 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
4 isogrp 33080 . . 3 (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd))
54simprbi 496 . 2 (𝐹 ∈ oGrp → 𝐹 ∈ oMnd)
6 omndtos 33083 . 2 (𝐹 ∈ oMnd → 𝐹 ∈ Toset)
72, 3, 5, 64syl 19 1 (𝐹 ∈ oField → 𝐹 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Tosetctos 18462  Grpcgrp 18952  Fieldcfield 20731  oMndcomnd 33075  oGrpcogrp 33076  oRingcorng 33326  oFieldcofld 33327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-omnd 33077  df-ogrp 33078  df-orng 33328  df-ofld 33329
This theorem is referenced by:  ofldchr  33345
  Copyright terms: Public domain W3C validator