Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofldtos | Structured version Visualization version GIF version |
Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
ofldtos | ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld 31501 | . . . 4 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
3 | orngogrp 31500 | . . 3 ⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | |
4 | isogrp 31328 | . . . 4 ⊢ (𝐹 ∈ oGrp ↔ (𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd)) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ oGrp → 𝐹 ∈ oMnd) |
6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐹 ∈ oField → 𝐹 ∈ oMnd) |
7 | omndtos 31331 | . 2 ⊢ (𝐹 ∈ oMnd → 𝐹 ∈ Toset) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Tosetctos 18134 Grpcgrp 18577 Fieldcfield 19992 oMndcomnd 31323 oGrpcogrp 31324 oRingcorng 31494 oFieldcofld 31495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-omnd 31325 df-ogrp 31326 df-orng 31496 df-ofld 31497 |
This theorem is referenced by: ofldchr 31513 |
Copyright terms: Public domain | W3C validator |