Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(od‘𝐹) =
(od‘𝐹) |
2 | | eqid 2738 |
. . 3
⊢
(1r‘𝐹) = (1r‘𝐹) |
3 | | eqid 2738 |
. . 3
⊢
(chr‘𝐹) =
(chr‘𝐹) |
4 | 1, 2, 3 | chrval 20641 |
. 2
⊢
((od‘𝐹)‘(1r‘𝐹)) = (chr‘𝐹) |
5 | | ofldfld 31411 |
. . . . 5
⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) |
6 | | isfld 19915 |
. . . . . 6
⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) |
7 | 6 | simplbi 497 |
. . . . 5
⊢ (𝐹 ∈ Field → 𝐹 ∈
DivRing) |
8 | | drngring 19913 |
. . . . 5
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) |
9 | 5, 7, 8 | 3syl 18 |
. . . 4
⊢ (𝐹 ∈ oField → 𝐹 ∈ Ring) |
10 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) |
11 | 10, 2 | ringidcl 19722 |
. . . 4
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ (Base‘𝐹)) |
12 | | eqid 2738 |
. . . . 5
⊢
(.g‘𝐹) = (.g‘𝐹) |
13 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) |
14 | | eqid 2738 |
. . . . 5
⊢ {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} |
15 | 10, 12, 13, 1, 14 | odval 19057 |
. . . 4
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) |
16 | 9, 11, 15 | 3syl 18 |
. . 3
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) |
17 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (1(.g‘𝐹)(1r‘𝐹))) |
18 | 17 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 →
((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹)))) |
19 | 18 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))))) |
20 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
21 | 20 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
22 | 21 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))))) |
23 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝑛(.g‘𝐹)(1r‘𝐹)) = ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
24 | 23 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) |
25 | 24 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
26 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑦(.g‘𝐹)(1r‘𝐹))) |
27 | 26 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑦 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) |
28 | 27 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))))) |
29 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(lt‘𝐹) =
(lt‘𝐹) |
30 | 13, 2, 29 | ofldlt1 31414 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) |
31 | 9, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ oField →
(1r‘𝐹)
∈ (Base‘𝐹)) |
32 | 10, 12 | mulg1 18626 |
. . . . . . . . . . . . 13
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → (1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
34 | 30, 33 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))) |
35 | | ofldtos 31412 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
36 | | tospos 18053 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ oField → 𝐹 ∈ Poset) |
38 | 37 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Poset) |
39 | | ringgrp 19703 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) |
40 | 9, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ Grp) |
41 | 40 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Grp) |
42 | 10, 13 | grpidcl 18522 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Grp →
(0g‘𝐹)
∈ (Base‘𝐹)) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹) ∈ (Base‘𝐹)) |
44 | | grpmnd 18499 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Grp → 𝐹 ∈ Mnd) |
45 | | mndmgm 18307 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Mnd → 𝐹 ∈ Mgm) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Grp → 𝐹 ∈ Mgm) |
47 | 41, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Mgm) |
48 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝑚 ∈ ℕ) |
49 | 31 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (1r‘𝐹) ∈ (Base‘𝐹)) |
50 | 10, 12 | mulgnncl 18634 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
51 | 47, 48, 49, 50 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
52 | 48 | peano2nnd 11920 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚 + 1) ∈ ℕ) |
53 | 10, 12 | mulgnncl 18634 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
54 | 47, 52, 49, 53 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
55 | 43, 51, 54 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) |
56 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) |
57 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oField) |
58 | | isofld 31403 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
59 | 58 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
60 | | orngogrp 31402 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) |
61 | 57, 59, 60 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oGrp) |
62 | 30 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) |
63 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐹) = (+g‘𝐹) |
64 | 10, 29, 63 | ogrpaddlt 31245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ oGrp ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) ∧ (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
65 | 61, 43, 49, 51, 62, 64 | syl131anc 1381 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
66 | 10, 63, 13 | grplid 18524 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ Grp ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) →
((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
67 | 41, 51, 66 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
68 | 67 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) = ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
69 | 10, 12, 63 | mulgnnp1 18627 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) |
70 | 48, 49, 69 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) |
71 | | ringcmn 19735 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) |
72 | 57, 9, 71 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ CMnd) |
73 | 10, 63 | cmncom 19318 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ CMnd ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
74 | 72, 51, 49, 73 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
75 | 70, 74 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
76 | 65, 68, 75 | 3brtr4d 5102 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
77 | 10, 29 | plttr 17975 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) → (((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) |
78 | 77 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) ∧ ((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
79 | 38, 55, 56, 76, 78 | syl22anc 835 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
80 | 79 | exp31 419 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
81 | 80 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
82 | 19, 22, 25, 28, 34, 81 | nnind 11921 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) |
83 | 82 | impcom 407 |
. . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))) |
84 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(0g‘𝐹) ∈ V |
85 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V |
86 | 29 | pltne 17967 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ oField ∧
(0g‘𝐹)
∈ V ∧ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
87 | 84, 85, 86 | mp3an23 1451 |
. . . . . . . . . 10
⊢ (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
88 | 87 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
89 | 83, 88 | mpd 15 |
. . . . . . . 8
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)
≠ (𝑦(.g‘𝐹)(1r‘𝐹))) |
90 | 89 | necomd 2998 |
. . . . . . 7
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g‘𝐹)(1r‘𝐹)) ≠
(0g‘𝐹)) |
91 | 90 | neneqd 2947 |
. . . . . 6
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬
(𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
92 | 91 | ralrimiva 3107 |
. . . . 5
⊢ (𝐹 ∈ oField →
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
93 | | rabeq0 4315 |
. . . . 5
⊢ ({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅ ↔
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
94 | 92, 93 | sylibr 233 |
. . . 4
⊢ (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅) |
95 | 94 | iftrued 4464 |
. . 3
⊢ (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < )) =
0) |
96 | 16, 95 | eqtrd 2778 |
. 2
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = 0) |
97 | 4, 96 | eqtr3id 2793 |
1
⊢ (𝐹 ∈ oField →
(chr‘𝐹) =
0) |