| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢
(od‘𝐹) =
(od‘𝐹) | 
| 2 |  | eqid 2736 | . . 3
⊢
(1r‘𝐹) = (1r‘𝐹) | 
| 3 |  | eqid 2736 | . . 3
⊢
(chr‘𝐹) =
(chr‘𝐹) | 
| 4 | 1, 2, 3 | chrval 21539 | . 2
⊢
((od‘𝐹)‘(1r‘𝐹)) = (chr‘𝐹) | 
| 5 |  | ofldfld 33341 | . . . . 5
⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | 
| 6 |  | isfld 20741 | . . . . . 6
⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | 
| 7 | 6 | simplbi 497 | . . . . 5
⊢ (𝐹 ∈ Field → 𝐹 ∈
DivRing) | 
| 8 |  | drngring 20737 | . . . . 5
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | 
| 9 | 5, 7, 8 | 3syl 18 | . . . 4
⊢ (𝐹 ∈ oField → 𝐹 ∈ Ring) | 
| 10 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) | 
| 11 | 10, 2 | ringidcl 20263 | . . . 4
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ (Base‘𝐹)) | 
| 12 |  | eqid 2736 | . . . . 5
⊢
(.g‘𝐹) = (.g‘𝐹) | 
| 13 |  | eqid 2736 | . . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) | 
| 14 |  | eqid 2736 | . . . . 5
⊢ {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} | 
| 15 | 10, 12, 13, 1, 14 | odval 19553 | . . . 4
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) | 
| 16 | 9, 11, 15 | 3syl 18 | . . 3
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) | 
| 17 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (1(.g‘𝐹)(1r‘𝐹))) | 
| 18 | 17 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = 1 →
((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹)))) | 
| 19 | 18 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))))) | 
| 20 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑚(.g‘𝐹)(1r‘𝐹))) | 
| 21 | 20 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 22 | 21 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))))) | 
| 23 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝑛(.g‘𝐹)(1r‘𝐹)) = ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) | 
| 24 | 23 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) | 
| 25 | 24 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) | 
| 26 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑦(.g‘𝐹)(1r‘𝐹))) | 
| 27 | 26 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑦 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) | 
| 28 | 27 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))))) | 
| 29 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(lt‘𝐹) =
(lt‘𝐹) | 
| 30 | 13, 2, 29 | ofldlt1 33344 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) | 
| 31 | 9, 11 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝐹 ∈ oField →
(1r‘𝐹)
∈ (Base‘𝐹)) | 
| 32 | 10, 12 | mulg1 19100 | . . . . . . . . . . . . 13
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → (1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) | 
| 33 | 31, 32 | syl 17 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) | 
| 34 | 30, 33 | breqtrrd 5170 | . . . . . . . . . . 11
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))) | 
| 35 |  | ofldtos 33342 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) | 
| 36 |  | tospos 18466 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ oField → 𝐹 ∈ Poset) | 
| 38 | 37 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Poset) | 
| 39 | 9 | ringgrpd 20240 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ Grp) | 
| 40 | 39 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Grp) | 
| 41 | 10, 13 | grpidcl 18984 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Grp →
(0g‘𝐹)
∈ (Base‘𝐹)) | 
| 42 | 40, 41 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹) ∈ (Base‘𝐹)) | 
| 43 | 40 | grpmgmd 18980 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Mgm) | 
| 44 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝑚 ∈ ℕ) | 
| 45 | 31 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (1r‘𝐹) ∈ (Base‘𝐹)) | 
| 46 | 10, 12 | mulgnncl 19108 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) | 
| 47 | 43, 44, 45, 46 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) | 
| 48 | 44 | peano2nnd 12284 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚 + 1) ∈ ℕ) | 
| 49 | 10, 12 | mulgnncl 19108 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) | 
| 50 | 43, 48, 45, 49 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) | 
| 51 | 42, 47, 50 | 3jca 1128 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) | 
| 52 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) | 
| 53 |  | simplr 768 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oField) | 
| 54 |  | isofld 33333 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | 
| 55 | 54 | simprbi 496 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) | 
| 56 |  | orngogrp 33332 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) | 
| 57 | 53, 55, 56 | 3syl 18 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oGrp) | 
| 58 | 30 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) | 
| 59 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐹) = (+g‘𝐹) | 
| 60 | 10, 29, 59 | ogrpaddlt 33095 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ oGrp ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) ∧ (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 61 | 57, 42, 45, 47, 58, 60 | syl131anc 1384 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 62 | 10, 59, 13, 40, 47 | grplidd 18988 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) = (𝑚(.g‘𝐹)(1r‘𝐹))) | 
| 63 | 62 | eqcomd 2742 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) = ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 64 | 10, 12, 59 | mulgnnp1 19101 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) | 
| 65 | 44, 45, 64 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) | 
| 66 |  | ringcmn 20280 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | 
| 67 | 53, 9, 66 | 3syl 18 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ CMnd) | 
| 68 | 10, 59 | cmncom 19817 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ CMnd ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 69 | 67, 47, 45, 68 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 70 | 65, 69 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) | 
| 71 | 61, 63, 70 | 3brtr4d 5174 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) | 
| 72 | 10, 29 | plttr 18388 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) → (((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) | 
| 73 | 72 | imp 406 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) ∧ ((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) | 
| 74 | 38, 51, 52, 71, 73 | syl22anc 838 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) | 
| 75 | 74 | exp31 419 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) | 
| 76 | 75 | a2d 29 | . . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) | 
| 77 | 19, 22, 25, 28, 34, 76 | nnind 12285 | . . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) | 
| 78 | 77 | impcom 407 | . . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))) | 
| 79 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(0g‘𝐹) ∈ V | 
| 80 |  | ovex 7465 | . . . . . . . . . . 11
⊢ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V | 
| 81 | 29 | pltne 18380 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ oField ∧
(0g‘𝐹)
∈ V ∧ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) | 
| 82 | 79, 80, 81 | mp3an23 1454 | . . . . . . . . . 10
⊢ (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) | 
| 83 | 82 | adantr 480 | . . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) | 
| 84 | 78, 83 | mpd 15 | . . . . . . . 8
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)
≠ (𝑦(.g‘𝐹)(1r‘𝐹))) | 
| 85 | 84 | necomd 2995 | . . . . . . 7
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g‘𝐹)(1r‘𝐹)) ≠
(0g‘𝐹)) | 
| 86 | 85 | neneqd 2944 | . . . . . 6
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬
(𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) | 
| 87 | 86 | ralrimiva 3145 | . . . . 5
⊢ (𝐹 ∈ oField →
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) | 
| 88 |  | rabeq0 4387 | . . . . 5
⊢ ({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅ ↔
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) | 
| 89 | 87, 88 | sylibr 234 | . . . 4
⊢ (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅) | 
| 90 | 89 | iftrued 4532 | . . 3
⊢ (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < )) =
0) | 
| 91 | 16, 90 | eqtrd 2776 | . 2
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = 0) | 
| 92 | 4, 91 | eqtr3id 2790 | 1
⊢ (𝐹 ∈ oField →
(chr‘𝐹) =
0) |