Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldchr Structured version   Visualization version   GIF version

Theorem ofldchr 31415
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
Assertion
Ref Expression
ofldchr (𝐹 ∈ oField → (chr‘𝐹) = 0)

Proof of Theorem ofldchr
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (od‘𝐹) = (od‘𝐹)
2 eqid 2738 . . 3 (1r𝐹) = (1r𝐹)
3 eqid 2738 . . 3 (chr‘𝐹) = (chr‘𝐹)
41, 2, 3chrval 20641 . 2 ((od‘𝐹)‘(1r𝐹)) = (chr‘𝐹)
5 ofldfld 31411 . . . . 5 (𝐹 ∈ oField → 𝐹 ∈ Field)
6 isfld 19915 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
76simplbi 497 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
8 drngring 19913 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
95, 7, 83syl 18 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ Ring)
10 eqid 2738 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1110, 2ringidcl 19722 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 eqid 2738 . . . . 5 (.g𝐹) = (.g𝐹)
13 eqid 2738 . . . . 5 (0g𝐹) = (0g𝐹)
14 eqid 2738 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}
1510, 12, 13, 1, 14odval 19057 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
169, 11, 153syl 18 . . 3 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
17 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛(.g𝐹)(1r𝐹)) = (1(.g𝐹)(1r𝐹)))
1817breq2d 5082 . . . . . . . . . . . 12 (𝑛 = 1 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹))))
1918imbi2d 340 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))))
20 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑛(.g𝐹)(1r𝐹)) = (𝑚(.g𝐹)(1r𝐹)))
2120breq2d 5082 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))))
2221imbi2d 340 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))))
23 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝑛(.g𝐹)(1r𝐹)) = ((𝑚 + 1)(.g𝐹)(1r𝐹)))
2423breq2d 5082 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
2524imbi2d 340 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
26 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝑛(.g𝐹)(1r𝐹)) = (𝑦(.g𝐹)(1r𝐹)))
2726breq2d 5082 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
2827imbi2d 340 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))))
29 eqid 2738 . . . . . . . . . . . . 13 (lt‘𝐹) = (lt‘𝐹)
3013, 2, 29ofldlt1 31414 . . . . . . . . . . . 12 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1r𝐹))
319, 11syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ oField → (1r𝐹) ∈ (Base‘𝐹))
3210, 12mulg1 18626 . . . . . . . . . . . . 13 ((1r𝐹) ∈ (Base‘𝐹) → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3331, 32syl 17 . . . . . . . . . . . 12 (𝐹 ∈ oField → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3430, 33breqtrrd 5098 . . . . . . . . . . 11 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))
35 ofldtos 31412 . . . . . . . . . . . . . . . 16 (𝐹 ∈ oField → 𝐹 ∈ Toset)
36 tospos 18053 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ oField → 𝐹 ∈ Poset)
3837ad2antlr 723 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Poset)
39 ringgrp 19703 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ Grp)
4140ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Grp)
4210, 13grpidcl 18522 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Grp → (0g𝐹) ∈ (Base‘𝐹))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹) ∈ (Base‘𝐹))
44 grpmnd 18499 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
45 mndmgm 18307 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Mnd → 𝐹 ∈ Mgm)
4644, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Grp → 𝐹 ∈ Mgm)
4741, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Mgm)
48 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝑚 ∈ ℕ)
4931ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (1r𝐹) ∈ (Base‘𝐹))
5010, 12mulgnncl 18634 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5147, 48, 49, 50syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5248peano2nnd 11920 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚 + 1) ∈ ℕ)
5310, 12mulgnncl 18634 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5447, 52, 49, 53syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5543, 51, 543jca 1126 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)))
56 simpr 484 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))
57 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oField)
58 isofld 31403 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
5958simprbi 496 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ oRing)
60 orngogrp 31402 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
6157, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oGrp)
6230ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(1r𝐹))
63 eqid 2738 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
6410, 29, 63ogrpaddlt 31245 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ oGrp ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) ∧ (0g𝐹)(lt‘𝐹)(1r𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6561, 43, 49, 51, 62, 64syl131anc 1381 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6610, 63, 13grplid 18524 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Grp ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6741, 51, 66syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6867eqcomd 2744 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) = ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6910, 12, 63mulgnnp1 18627 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
7048, 49, 69syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
71 ringcmn 19735 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
7257, 9, 713syl 18 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ CMnd)
7310, 63cmncom 19318 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ CMnd ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7472, 51, 49, 73syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7570, 74eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7665, 68, 753brtr4d 5102 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7710, 29plttr 17975 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) → (((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
7877imp 406 . . . . . . . . . . . . . 14 (((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) ∧ ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7938, 55, 56, 76, 78syl22anc 835 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
8079exp31 419 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8180a2d 29 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8219, 22, 25, 28, 34, 81nnind 11921 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
8382impcom 407 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))
84 fvex 6769 . . . . . . . . . . 11 (0g𝐹) ∈ V
85 ovex 7288 . . . . . . . . . . 11 (𝑦(.g𝐹)(1r𝐹)) ∈ V
8629pltne 17967 . . . . . . . . . . 11 ((𝐹 ∈ oField ∧ (0g𝐹) ∈ V ∧ (𝑦(.g𝐹)(1r𝐹)) ∈ V) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8784, 85, 86mp3an23 1451 . . . . . . . . . 10 (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8887adantr 480 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8983, 88mpd 15 . . . . . . . 8 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹)))
9089necomd 2998 . . . . . . 7 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g𝐹)(1r𝐹)) ≠ (0g𝐹))
9190neneqd 2947 . . . . . 6 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9291ralrimiva 3107 . . . . 5 (𝐹 ∈ oField → ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
93 rabeq0 4315 . . . . 5 ({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅ ↔ ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9492, 93sylibr 233 . . . 4 (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅)
9594iftrued 4464 . . 3 (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )) = 0)
9616, 95eqtrd 2778 . 2 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = 0)
974, 96eqtr3id 2793 1 (𝐹 ∈ oField → (chr‘𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  c0 4253  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cn 11903  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Posetcpo 17940  ltcplt 17941  Tosetctos 18049  Mgmcmgm 18239  Mndcmnd 18300  Grpcgrp 18492  .gcmg 18615  odcod 19047  CMndccmn 19301  1rcur 19652  Ringcrg 19698  CRingccrg 19699  DivRingcdr 19906  Fieldcfield 19907  chrcchr 20615  oGrpcogrp 31226  oRingcorng 31396  oFieldcofld 31397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-drng 19908  df-field 19909  df-chr 20619  df-omnd 31227  df-ogrp 31228  df-orng 31398  df-ofld 31399
This theorem is referenced by:  rerrext  31859  cnrrext  31860
  Copyright terms: Public domain W3C validator