Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldchr Structured version   Visualization version   GIF version

Theorem ofldchr 33345
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
Assertion
Ref Expression
ofldchr (𝐹 ∈ oField → (chr‘𝐹) = 0)

Proof of Theorem ofldchr
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (od‘𝐹) = (od‘𝐹)
2 eqid 2736 . . 3 (1r𝐹) = (1r𝐹)
3 eqid 2736 . . 3 (chr‘𝐹) = (chr‘𝐹)
41, 2, 3chrval 21539 . 2 ((od‘𝐹)‘(1r𝐹)) = (chr‘𝐹)
5 ofldfld 33341 . . . . 5 (𝐹 ∈ oField → 𝐹 ∈ Field)
6 isfld 20741 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
76simplbi 497 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
8 drngring 20737 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
95, 7, 83syl 18 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ Ring)
10 eqid 2736 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1110, 2ringidcl 20263 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 eqid 2736 . . . . 5 (.g𝐹) = (.g𝐹)
13 eqid 2736 . . . . 5 (0g𝐹) = (0g𝐹)
14 eqid 2736 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}
1510, 12, 13, 1, 14odval 19553 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
169, 11, 153syl 18 . . 3 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
17 oveq1 7439 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛(.g𝐹)(1r𝐹)) = (1(.g𝐹)(1r𝐹)))
1817breq2d 5154 . . . . . . . . . . . 12 (𝑛 = 1 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹))))
1918imbi2d 340 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))))
20 oveq1 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑛(.g𝐹)(1r𝐹)) = (𝑚(.g𝐹)(1r𝐹)))
2120breq2d 5154 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))))
2221imbi2d 340 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))))
23 oveq1 7439 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝑛(.g𝐹)(1r𝐹)) = ((𝑚 + 1)(.g𝐹)(1r𝐹)))
2423breq2d 5154 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
2524imbi2d 340 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
26 oveq1 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝑛(.g𝐹)(1r𝐹)) = (𝑦(.g𝐹)(1r𝐹)))
2726breq2d 5154 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
2827imbi2d 340 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))))
29 eqid 2736 . . . . . . . . . . . . 13 (lt‘𝐹) = (lt‘𝐹)
3013, 2, 29ofldlt1 33344 . . . . . . . . . . . 12 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1r𝐹))
319, 11syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ oField → (1r𝐹) ∈ (Base‘𝐹))
3210, 12mulg1 19100 . . . . . . . . . . . . 13 ((1r𝐹) ∈ (Base‘𝐹) → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3331, 32syl 17 . . . . . . . . . . . 12 (𝐹 ∈ oField → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3430, 33breqtrrd 5170 . . . . . . . . . . 11 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))
35 ofldtos 33342 . . . . . . . . . . . . . . . 16 (𝐹 ∈ oField → 𝐹 ∈ Toset)
36 tospos 18466 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ oField → 𝐹 ∈ Poset)
3837ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Poset)
399ringgrpd 20240 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ Grp)
4039ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Grp)
4110, 13grpidcl 18984 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Grp → (0g𝐹) ∈ (Base‘𝐹))
4240, 41syl 17 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹) ∈ (Base‘𝐹))
4340grpmgmd 18980 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Mgm)
44 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝑚 ∈ ℕ)
4531ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (1r𝐹) ∈ (Base‘𝐹))
4610, 12mulgnncl 19108 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
4743, 44, 45, 46syl3anc 1372 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
4844peano2nnd 12284 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚 + 1) ∈ ℕ)
4910, 12mulgnncl 19108 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5043, 48, 45, 49syl3anc 1372 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5142, 47, 503jca 1128 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)))
52 simpr 484 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))
53 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oField)
54 isofld 33333 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
5554simprbi 496 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ oRing)
56 orngogrp 33332 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
5753, 55, 563syl 18 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oGrp)
5830ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(1r𝐹))
59 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
6010, 29, 59ogrpaddlt 33095 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ oGrp ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) ∧ (0g𝐹)(lt‘𝐹)(1r𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6157, 42, 45, 47, 58, 60syl131anc 1384 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6210, 59, 13, 40, 47grplidd 18988 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6362eqcomd 2742 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) = ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6410, 12, 59mulgnnp1 19101 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
6544, 45, 64syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
66 ringcmn 20280 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
6753, 9, 663syl 18 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ CMnd)
6810, 59cmncom 19817 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ CMnd ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6967, 47, 45, 68syl3anc 1372 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7065, 69eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7161, 63, 703brtr4d 5174 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7210, 29plttr 18388 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) → (((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
7372imp 406 . . . . . . . . . . . . . 14 (((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) ∧ ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7438, 51, 52, 71, 73syl22anc 838 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7574exp31 419 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
7675a2d 29 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
7719, 22, 25, 28, 34, 76nnind 12285 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
7877impcom 407 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))
79 fvex 6918 . . . . . . . . . . 11 (0g𝐹) ∈ V
80 ovex 7465 . . . . . . . . . . 11 (𝑦(.g𝐹)(1r𝐹)) ∈ V
8129pltne 18380 . . . . . . . . . . 11 ((𝐹 ∈ oField ∧ (0g𝐹) ∈ V ∧ (𝑦(.g𝐹)(1r𝐹)) ∈ V) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8279, 80, 81mp3an23 1454 . . . . . . . . . 10 (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8382adantr 480 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8478, 83mpd 15 . . . . . . . 8 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹)))
8584necomd 2995 . . . . . . 7 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g𝐹)(1r𝐹)) ≠ (0g𝐹))
8685neneqd 2944 . . . . . 6 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
8786ralrimiva 3145 . . . . 5 (𝐹 ∈ oField → ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
88 rabeq0 4387 . . . . 5 ({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅ ↔ ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
8987, 88sylibr 234 . . . 4 (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅)
9089iftrued 4532 . . 3 (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )) = 0)
9116, 90eqtrd 2776 . 2 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = 0)
924, 91eqtr3id 2790 1 (𝐹 ∈ oField → (chr‘𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  Vcvv 3479  c0 4332  ifcif 4524   class class class wbr 5142  cfv 6560  (class class class)co 7432  infcinf 9482  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cn 12267  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Posetcpo 18354  ltcplt 18355  Tosetctos 18462  Mgmcmgm 18652  Grpcgrp 18952  .gcmg 19086  odcod 19543  CMndccmn 19799  1rcur 20179  Ringcrg 20231  CRingccrg 20232  DivRingcdr 20730  Fieldcfield 20731  chrcchr 21513  oGrpcogrp 33076  oRingcorng 33326  oFieldcofld 33327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-seq 14044  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-toset 18463  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-mulg 19087  df-od 19547  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-drng 20732  df-field 20733  df-chr 21517  df-omnd 33077  df-ogrp 33078  df-orng 33328  df-ofld 33329
This theorem is referenced by:  rerrext  34011  cnrrext  34012
  Copyright terms: Public domain W3C validator