Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldchr Structured version   Visualization version   GIF version

Theorem ofldchr 30938
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
Assertion
Ref Expression
ofldchr (𝐹 ∈ oField → (chr‘𝐹) = 0)

Proof of Theorem ofldchr
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (od‘𝐹) = (od‘𝐹)
2 eqid 2798 . . 3 (1r𝐹) = (1r𝐹)
3 eqid 2798 . . 3 (chr‘𝐹) = (chr‘𝐹)
41, 2, 3chrval 20217 . 2 ((od‘𝐹)‘(1r𝐹)) = (chr‘𝐹)
5 ofldfld 30934 . . . . 5 (𝐹 ∈ oField → 𝐹 ∈ Field)
6 isfld 19504 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
76simplbi 501 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
8 drngring 19502 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
95, 7, 83syl 18 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ Ring)
10 eqid 2798 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1110, 2ringidcl 19314 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 eqid 2798 . . . . 5 (.g𝐹) = (.g𝐹)
13 eqid 2798 . . . . 5 (0g𝐹) = (0g𝐹)
14 eqid 2798 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}
1510, 12, 13, 1, 14odval 18654 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
169, 11, 153syl 18 . . 3 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
17 oveq1 7142 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛(.g𝐹)(1r𝐹)) = (1(.g𝐹)(1r𝐹)))
1817breq2d 5042 . . . . . . . . . . . 12 (𝑛 = 1 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹))))
1918imbi2d 344 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))))
20 oveq1 7142 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑛(.g𝐹)(1r𝐹)) = (𝑚(.g𝐹)(1r𝐹)))
2120breq2d 5042 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))))
2221imbi2d 344 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))))
23 oveq1 7142 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝑛(.g𝐹)(1r𝐹)) = ((𝑚 + 1)(.g𝐹)(1r𝐹)))
2423breq2d 5042 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
2524imbi2d 344 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
26 oveq1 7142 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝑛(.g𝐹)(1r𝐹)) = (𝑦(.g𝐹)(1r𝐹)))
2726breq2d 5042 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
2827imbi2d 344 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))))
29 eqid 2798 . . . . . . . . . . . . 13 (lt‘𝐹) = (lt‘𝐹)
3013, 2, 29ofldlt1 30937 . . . . . . . . . . . 12 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1r𝐹))
319, 11syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ oField → (1r𝐹) ∈ (Base‘𝐹))
3210, 12mulg1 18227 . . . . . . . . . . . . 13 ((1r𝐹) ∈ (Base‘𝐹) → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3331, 32syl 17 . . . . . . . . . . . 12 (𝐹 ∈ oField → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3430, 33breqtrrd 5058 . . . . . . . . . . 11 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))
35 ofldtos 30935 . . . . . . . . . . . . . . . 16 (𝐹 ∈ oField → 𝐹 ∈ Toset)
36 tospos 30671 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ oField → 𝐹 ∈ Poset)
3837ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Poset)
39 ringgrp 19295 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ Grp)
4140ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Grp)
4210, 13grpidcl 18123 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Grp → (0g𝐹) ∈ (Base‘𝐹))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹) ∈ (Base‘𝐹))
44 grpmnd 18102 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
45 mndmgm 17910 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Mnd → 𝐹 ∈ Mgm)
4644, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Grp → 𝐹 ∈ Mgm)
4741, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Mgm)
48 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝑚 ∈ ℕ)
4931ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (1r𝐹) ∈ (Base‘𝐹))
5010, 12mulgnncl 18235 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5147, 48, 49, 50syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5248peano2nnd 11642 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚 + 1) ∈ ℕ)
5310, 12mulgnncl 18235 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5447, 52, 49, 53syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5543, 51, 543jca 1125 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)))
56 simpr 488 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))
57 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oField)
58 isofld 30926 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
5958simprbi 500 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ oRing)
60 orngogrp 30925 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
6157, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oGrp)
6230ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(1r𝐹))
63 eqid 2798 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
6410, 29, 63ogrpaddlt 30768 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ oGrp ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) ∧ (0g𝐹)(lt‘𝐹)(1r𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6561, 43, 49, 51, 62, 64syl131anc 1380 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6610, 63, 13grplid 18125 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Grp ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6741, 51, 66syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6867eqcomd 2804 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) = ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6910, 12, 63mulgnnp1 18228 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
7048, 49, 69syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
71 ringcmn 19327 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
7257, 9, 713syl 18 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ CMnd)
7310, 63cmncom 18915 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ CMnd ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7472, 51, 49, 73syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7570, 74eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7665, 68, 753brtr4d 5062 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7710, 29plttr 17572 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) → (((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
7877imp 410 . . . . . . . . . . . . . 14 (((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) ∧ ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7938, 55, 56, 76, 78syl22anc 837 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
8079exp31 423 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8180a2d 29 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8219, 22, 25, 28, 34, 81nnind 11643 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
8382impcom 411 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))
84 fvex 6658 . . . . . . . . . . 11 (0g𝐹) ∈ V
85 ovex 7168 . . . . . . . . . . 11 (𝑦(.g𝐹)(1r𝐹)) ∈ V
8629pltne 17564 . . . . . . . . . . 11 ((𝐹 ∈ oField ∧ (0g𝐹) ∈ V ∧ (𝑦(.g𝐹)(1r𝐹)) ∈ V) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8784, 85, 86mp3an23 1450 . . . . . . . . . 10 (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8887adantr 484 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8983, 88mpd 15 . . . . . . . 8 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹)))
9089necomd 3042 . . . . . . 7 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g𝐹)(1r𝐹)) ≠ (0g𝐹))
9190neneqd 2992 . . . . . 6 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9291ralrimiva 3149 . . . . 5 (𝐹 ∈ oField → ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
93 rabeq0 4292 . . . . 5 ({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅ ↔ ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9492, 93sylibr 237 . . . 4 (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅)
9594iftrued 4433 . . 3 (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )) = 0)
9616, 95eqtrd 2833 . 2 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = 0)
974, 96syl5eqr 2847 1 (𝐹 ∈ oField → (chr‘𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  Vcvv 3441  c0 4243  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cn 11625  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Posetcpo 17542  ltcplt 17543  Tosetctos 17635  Mgmcmgm 17842  Mndcmnd 17903  Grpcgrp 18095  .gcmg 18216  odcod 18644  CMndccmn 18898  1rcur 19244  Ringcrg 19290  CRingccrg 19291  DivRingcdr 19495  Fieldcfield 19496  chrcchr 20195  oGrpcogrp 30749  oRingcorng 30919  oFieldcofld 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-toset 17636  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mulg 18217  df-od 18648  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-drng 19497  df-field 19498  df-chr 20199  df-omnd 30750  df-ogrp 30751  df-orng 30921  df-ofld 30922
This theorem is referenced by:  rerrext  31360  cnrrext  31361
  Copyright terms: Public domain W3C validator