Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldchr Structured version   Visualization version   GIF version

Theorem ofldchr 30882
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
Assertion
Ref Expression
ofldchr (𝐹 ∈ oField → (chr‘𝐹) = 0)

Proof of Theorem ofldchr
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (od‘𝐹) = (od‘𝐹)
2 eqid 2821 . . 3 (1r𝐹) = (1r𝐹)
3 eqid 2821 . . 3 (chr‘𝐹) = (chr‘𝐹)
41, 2, 3chrval 20666 . 2 ((od‘𝐹)‘(1r𝐹)) = (chr‘𝐹)
5 ofldfld 30878 . . . . 5 (𝐹 ∈ oField → 𝐹 ∈ Field)
6 isfld 19505 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
76simplbi 500 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
8 drngring 19503 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
95, 7, 83syl 18 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ Ring)
10 eqid 2821 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1110, 2ringidcl 19312 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 eqid 2821 . . . . 5 (.g𝐹) = (.g𝐹)
13 eqid 2821 . . . . 5 (0g𝐹) = (0g𝐹)
14 eqid 2821 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}
1510, 12, 13, 1, 14odval 18656 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
169, 11, 153syl 18 . . 3 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
17 oveq1 7157 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛(.g𝐹)(1r𝐹)) = (1(.g𝐹)(1r𝐹)))
1817breq2d 5070 . . . . . . . . . . . 12 (𝑛 = 1 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹))))
1918imbi2d 343 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))))
20 oveq1 7157 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑛(.g𝐹)(1r𝐹)) = (𝑚(.g𝐹)(1r𝐹)))
2120breq2d 5070 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))))
2221imbi2d 343 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))))
23 oveq1 7157 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝑛(.g𝐹)(1r𝐹)) = ((𝑚 + 1)(.g𝐹)(1r𝐹)))
2423breq2d 5070 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
2524imbi2d 343 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
26 oveq1 7157 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝑛(.g𝐹)(1r𝐹)) = (𝑦(.g𝐹)(1r𝐹)))
2726breq2d 5070 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
2827imbi2d 343 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))))
29 eqid 2821 . . . . . . . . . . . . 13 (lt‘𝐹) = (lt‘𝐹)
3013, 2, 29ofldlt1 30881 . . . . . . . . . . . 12 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1r𝐹))
319, 11syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ oField → (1r𝐹) ∈ (Base‘𝐹))
3210, 12mulg1 18229 . . . . . . . . . . . . 13 ((1r𝐹) ∈ (Base‘𝐹) → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3331, 32syl 17 . . . . . . . . . . . 12 (𝐹 ∈ oField → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3430, 33breqtrrd 5086 . . . . . . . . . . 11 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))
35 ofldtos 30879 . . . . . . . . . . . . . . . 16 (𝐹 ∈ oField → 𝐹 ∈ Toset)
36 tospos 30640 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ oField → 𝐹 ∈ Poset)
3837ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Poset)
39 ringgrp 19296 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ Grp)
4140ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Grp)
4210, 13grpidcl 18125 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Grp → (0g𝐹) ∈ (Base‘𝐹))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹) ∈ (Base‘𝐹))
44 grpmnd 18104 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
45 mndmgm 17912 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Mnd → 𝐹 ∈ Mgm)
4644, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Grp → 𝐹 ∈ Mgm)
4741, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Mgm)
48 simpll 765 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝑚 ∈ ℕ)
4931ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (1r𝐹) ∈ (Base‘𝐹))
5010, 12mulgnncl 18237 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5147, 48, 49, 50syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5248peano2nnd 11649 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚 + 1) ∈ ℕ)
5310, 12mulgnncl 18237 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5447, 52, 49, 53syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5543, 51, 543jca 1124 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)))
56 simpr 487 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))
57 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oField)
58 isofld 30870 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
5958simprbi 499 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ oRing)
60 orngogrp 30869 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
6157, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oGrp)
6230ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(1r𝐹))
63 eqid 2821 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
6410, 29, 63ogrpaddlt 30713 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ oGrp ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) ∧ (0g𝐹)(lt‘𝐹)(1r𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6561, 43, 49, 51, 62, 64syl131anc 1379 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6610, 63, 13grplid 18127 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Grp ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6741, 51, 66syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6867eqcomd 2827 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) = ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6910, 12, 63mulgnnp1 18230 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
7048, 49, 69syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
71 ringcmn 19325 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
7257, 9, 713syl 18 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ CMnd)
7310, 63cmncom 18917 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ CMnd ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7472, 51, 49, 73syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7570, 74eqtrd 2856 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7665, 68, 753brtr4d 5090 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7710, 29plttr 17574 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) → (((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
7877imp 409 . . . . . . . . . . . . . 14 (((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) ∧ ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7938, 55, 56, 76, 78syl22anc 836 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
8079exp31 422 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8180a2d 29 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8219, 22, 25, 28, 34, 81nnind 11650 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
8382impcom 410 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))
84 fvex 6677 . . . . . . . . . . 11 (0g𝐹) ∈ V
85 ovex 7183 . . . . . . . . . . 11 (𝑦(.g𝐹)(1r𝐹)) ∈ V
8629pltne 17566 . . . . . . . . . . 11 ((𝐹 ∈ oField ∧ (0g𝐹) ∈ V ∧ (𝑦(.g𝐹)(1r𝐹)) ∈ V) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8784, 85, 86mp3an23 1449 . . . . . . . . . 10 (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8887adantr 483 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8983, 88mpd 15 . . . . . . . 8 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹)))
9089necomd 3071 . . . . . . 7 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g𝐹)(1r𝐹)) ≠ (0g𝐹))
9190neneqd 3021 . . . . . 6 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9291ralrimiva 3182 . . . . 5 (𝐹 ∈ oField → ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
93 rabeq0 4337 . . . . 5 ({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅ ↔ ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9492, 93sylibr 236 . . . 4 (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅)
9594iftrued 4474 . . 3 (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )) = 0)
9616, 95eqtrd 2856 . 2 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = 0)
974, 96syl5eqr 2870 1 (𝐹 ∈ oField → (chr‘𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  c0 4290  ifcif 4466   class class class wbr 5058  cfv 6349  (class class class)co 7150  infcinf 8899  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cn 11632  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Posetcpo 17544  ltcplt 17545  Tosetctos 17637  Mgmcmgm 17844  Mndcmnd 17905  Grpcgrp 18097  .gcmg 18218  odcod 18646  CMndccmn 18900  1rcur 19245  Ringcrg 19291  CRingccrg 19292  DivRingcdr 19496  Fieldcfield 19497  chrcchr 20643  oGrpcogrp 30694  oRingcorng 30863  oFieldcofld 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-mulr 16573  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-toset 17638  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mulg 18219  df-od 18650  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-drng 19498  df-field 19499  df-chr 20647  df-omnd 30695  df-ogrp 30696  df-orng 30865  df-ofld 30866
This theorem is referenced by:  rerrext  31245  cnrrext  31246
  Copyright terms: Public domain W3C validator