Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmullt Structured version   Visualization version   GIF version

Theorem orngmullt 30558
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
orngmullt.b 𝐵 = (Base‘𝑅)
orngmullt.t · = (.r𝑅)
orngmullt.0 0 = (0g𝑅)
orngmullt.l < = (lt‘𝑅)
orngmullt.1 (𝜑𝑅 ∈ oRing)
orngmullt.4 (𝜑𝑅 ∈ DivRing)
orngmullt.2 (𝜑𝑋𝐵)
orngmullt.3 (𝜑𝑌𝐵)
orngmullt.x (𝜑0 < 𝑋)
orngmullt.y (𝜑0 < 𝑌)
Assertion
Ref Expression
orngmullt (𝜑0 < (𝑋 · 𝑌))

Proof of Theorem orngmullt
StepHypRef Expression
1 orngmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
2 orngmullt.2 . . 3 (𝜑𝑋𝐵)
3 orngmullt.x . . . . 5 (𝜑0 < 𝑋)
4 orngring 30549 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
5 ringgrp 19025 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6 orngmullt.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 orngmullt.0 . . . . . . . 8 0 = (0g𝑅)
86, 7grpidcl 17919 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
91, 4, 5, 84syl 19 . . . . . 6 (𝜑0𝐵)
10 eqid 2779 . . . . . . 7 (le‘𝑅) = (le‘𝑅)
11 orngmullt.l . . . . . . 7 < = (lt‘𝑅)
1210, 11pltval 17428 . . . . . 6 ((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝑅)𝑋0𝑋)))
131, 9, 2, 12syl3anc 1351 . . . . 5 (𝜑 → ( 0 < 𝑋 ↔ ( 0 (le‘𝑅)𝑋0𝑋)))
143, 13mpbid 224 . . . 4 (𝜑 → ( 0 (le‘𝑅)𝑋0𝑋))
1514simpld 487 . . 3 (𝜑0 (le‘𝑅)𝑋)
16 orngmullt.3 . . 3 (𝜑𝑌𝐵)
17 orngmullt.y . . . . 5 (𝜑0 < 𝑌)
1810, 11pltval 17428 . . . . . 6 ((𝑅 ∈ oRing ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ( 0 (le‘𝑅)𝑌0𝑌)))
191, 9, 16, 18syl3anc 1351 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ( 0 (le‘𝑅)𝑌0𝑌)))
2017, 19mpbid 224 . . . 4 (𝜑 → ( 0 (le‘𝑅)𝑌0𝑌))
2120simpld 487 . . 3 (𝜑0 (le‘𝑅)𝑌)
22 orngmullt.t . . . 4 · = (.r𝑅)
236, 10, 7, 22orngmul 30552 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 (le‘𝑅)𝑋) ∧ (𝑌𝐵0 (le‘𝑅)𝑌)) → 0 (le‘𝑅)(𝑋 · 𝑌))
241, 2, 15, 16, 21, 23syl122anc 1359 . 2 (𝜑0 (le‘𝑅)(𝑋 · 𝑌))
2514simprd 488 . . . . 5 (𝜑0𝑋)
2625necomd 3023 . . . 4 (𝜑𝑋0 )
2720simprd 488 . . . . 5 (𝜑0𝑌)
2827necomd 3023 . . . 4 (𝜑𝑌0 )
29 orngmullt.4 . . . . 5 (𝜑𝑅 ∈ DivRing)
306, 7, 22, 29, 2, 16drngmulne0 19247 . . . 4 (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋0𝑌0 )))
3126, 28, 30mpbir2and 700 . . 3 (𝜑 → (𝑋 · 𝑌) ≠ 0 )
3231necomd 3023 . 2 (𝜑0 ≠ (𝑋 · 𝑌))
331, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
346, 22ringcl 19034 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3533, 2, 16, 34syl3anc 1351 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
3610, 11pltval 17428 . . 3 ((𝑅 ∈ oRing ∧ 0𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐵) → ( 0 < (𝑋 · 𝑌) ↔ ( 0 (le‘𝑅)(𝑋 · 𝑌) ∧ 0 ≠ (𝑋 · 𝑌))))
371, 9, 35, 36syl3anc 1351 . 2 (𝜑 → ( 0 < (𝑋 · 𝑌) ↔ ( 0 (le‘𝑅)(𝑋 · 𝑌) ∧ 0 ≠ (𝑋 · 𝑌))))
3824, 32, 37mpbir2and 700 1 (𝜑0 < (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2968   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  .rcmulr 16422  lecple 16428  0gc0g 16569  ltcplt 17409  Grpcgrp 17891  Ringcrg 19020  DivRingcdr 19225  oRingcorng 30544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-tpos 7695  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-0g 16571  df-plt 17426  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-mgp 18963  df-ur 18975  df-ring 19022  df-oppr 19096  df-dvdsr 19114  df-unit 19115  df-invr 19145  df-drng 19227  df-orng 30546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator