Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmullt Structured version   Visualization version   GIF version

Theorem orngmullt 31410
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
orngmullt.b 𝐵 = (Base‘𝑅)
orngmullt.t · = (.r𝑅)
orngmullt.0 0 = (0g𝑅)
orngmullt.l < = (lt‘𝑅)
orngmullt.1 (𝜑𝑅 ∈ oRing)
orngmullt.4 (𝜑𝑅 ∈ DivRing)
orngmullt.2 (𝜑𝑋𝐵)
orngmullt.3 (𝜑𝑌𝐵)
orngmullt.x (𝜑0 < 𝑋)
orngmullt.y (𝜑0 < 𝑌)
Assertion
Ref Expression
orngmullt (𝜑0 < (𝑋 · 𝑌))

Proof of Theorem orngmullt
StepHypRef Expression
1 orngmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
2 orngmullt.2 . . 3 (𝜑𝑋𝐵)
3 orngmullt.x . . . . 5 (𝜑0 < 𝑋)
4 orngring 31401 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
5 ringgrp 19703 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6 orngmullt.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 orngmullt.0 . . . . . . . 8 0 = (0g𝑅)
86, 7grpidcl 18522 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
91, 4, 5, 84syl 19 . . . . . 6 (𝜑0𝐵)
10 eqid 2738 . . . . . . 7 (le‘𝑅) = (le‘𝑅)
11 orngmullt.l . . . . . . 7 < = (lt‘𝑅)
1210, 11pltval 17965 . . . . . 6 ((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝑅)𝑋0𝑋)))
131, 9, 2, 12syl3anc 1369 . . . . 5 (𝜑 → ( 0 < 𝑋 ↔ ( 0 (le‘𝑅)𝑋0𝑋)))
143, 13mpbid 231 . . . 4 (𝜑 → ( 0 (le‘𝑅)𝑋0𝑋))
1514simpld 494 . . 3 (𝜑0 (le‘𝑅)𝑋)
16 orngmullt.3 . . 3 (𝜑𝑌𝐵)
17 orngmullt.y . . . . 5 (𝜑0 < 𝑌)
1810, 11pltval 17965 . . . . . 6 ((𝑅 ∈ oRing ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ( 0 (le‘𝑅)𝑌0𝑌)))
191, 9, 16, 18syl3anc 1369 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ( 0 (le‘𝑅)𝑌0𝑌)))
2017, 19mpbid 231 . . . 4 (𝜑 → ( 0 (le‘𝑅)𝑌0𝑌))
2120simpld 494 . . 3 (𝜑0 (le‘𝑅)𝑌)
22 orngmullt.t . . . 4 · = (.r𝑅)
236, 10, 7, 22orngmul 31404 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 (le‘𝑅)𝑋) ∧ (𝑌𝐵0 (le‘𝑅)𝑌)) → 0 (le‘𝑅)(𝑋 · 𝑌))
241, 2, 15, 16, 21, 23syl122anc 1377 . 2 (𝜑0 (le‘𝑅)(𝑋 · 𝑌))
2514simprd 495 . . . . 5 (𝜑0𝑋)
2625necomd 2998 . . . 4 (𝜑𝑋0 )
2720simprd 495 . . . . 5 (𝜑0𝑌)
2827necomd 2998 . . . 4 (𝜑𝑌0 )
29 orngmullt.4 . . . . 5 (𝜑𝑅 ∈ DivRing)
306, 7, 22, 29, 2, 16drngmulne0 19928 . . . 4 (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋0𝑌0 )))
3126, 28, 30mpbir2and 709 . . 3 (𝜑 → (𝑋 · 𝑌) ≠ 0 )
3231necomd 2998 . 2 (𝜑0 ≠ (𝑋 · 𝑌))
331, 4syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
346, 22ringcl 19715 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3533, 2, 16, 34syl3anc 1369 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
3610, 11pltval 17965 . . 3 ((𝑅 ∈ oRing ∧ 0𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐵) → ( 0 < (𝑋 · 𝑌) ↔ ( 0 (le‘𝑅)(𝑋 · 𝑌) ∧ 0 ≠ (𝑋 · 𝑌))))
371, 9, 35, 36syl3anc 1369 . 2 (𝜑 → ( 0 < (𝑋 · 𝑌) ↔ ( 0 (le‘𝑅)(𝑋 · 𝑌) ∧ 0 ≠ (𝑋 · 𝑌))))
3824, 32, 37mpbir2and 709 1 (𝜑0 < (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  lecple 16895  0gc0g 17067  ltcplt 17941  Grpcgrp 18492  Ringcrg 19698  DivRingcdr 19906  oRingcorng 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-plt 17963  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-orng 31398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator