Step | Hyp | Ref
| Expression |
1 | | relsdom 8771 |
. . . 4
⊢ Rel
≺ |
2 | 1 | brrelex2i 5655 |
. . 3
⊢
(1o ≺ 𝐴 → 𝐴 ∈ V) |
3 | | sdomdom 8801 |
. . . . . . 7
⊢
(1o ≺ 𝐴 → 1o ≼ 𝐴) |
4 | | 0sdom1dom 9059 |
. . . . . . 7
⊢ (∅
≺ 𝐴 ↔
1o ≼ 𝐴) |
5 | 3, 4 | sylibr 233 |
. . . . . 6
⊢
(1o ≺ 𝐴 → ∅ ≺ 𝐴) |
6 | | 0sdomg 8929 |
. . . . . . 7
⊢ (𝐴 ∈ V → (∅
≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 2, 6 | syl 17 |
. . . . . 6
⊢
(1o ≺ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 5, 7 | mpbid 231 |
. . . . 5
⊢
(1o ≺ 𝐴 → 𝐴 ≠ ∅) |
9 | | n0snor2el 4770 |
. . . . 5
⊢ (𝐴 ≠ ∅ →
(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑥 𝐴 = {𝑥})) |
10 | 8, 9 | syl 17 |
. . . 4
⊢
(1o ≺ 𝐴 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑥 𝐴 = {𝑥})) |
11 | | sdomnen 8802 |
. . . . 5
⊢
(1o ≺ 𝐴 → ¬ 1o ≈ 𝐴) |
12 | | df1o2 8335 |
. . . . . . . 8
⊢
1o = {∅} |
13 | | 0ex 5240 |
. . . . . . . . 9
⊢ ∅
∈ V |
14 | | vex 3441 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
15 | | en2sn 8866 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ 𝑥 ∈ V)
→ {∅} ≈ {𝑥}) |
16 | 13, 14, 15 | mp2an 690 |
. . . . . . . 8
⊢ {∅}
≈ {𝑥} |
17 | 12, 16 | eqbrtri 5102 |
. . . . . . 7
⊢
1o ≈ {𝑥} |
18 | | breq2 5085 |
. . . . . . 7
⊢ (𝐴 = {𝑥} → (1o ≈ 𝐴 ↔ 1o ≈
{𝑥})) |
19 | 17, 18 | mpbiri 258 |
. . . . . 6
⊢ (𝐴 = {𝑥} → 1o ≈ 𝐴) |
20 | 19 | exlimiv 1931 |
. . . . 5
⊢
(∃𝑥 𝐴 = {𝑥} → 1o ≈ 𝐴) |
21 | 11, 20 | nsyl 140 |
. . . 4
⊢
(1o ≺ 𝐴 → ¬ ∃𝑥 𝐴 = {𝑥}) |
22 | 10, 21 | olcnd 875 |
. . 3
⊢
(1o ≺ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) |
23 | | rex2dom 9067 |
. . 3
⊢ ((𝐴 ∈ V ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
24 | 2, 22, 23 | syl2anc 585 |
. 2
⊢
(1o ≺ 𝐴 → 2o ≼ 𝐴) |
25 | | snsspr1 4753 |
. . . . 5
⊢ {∅}
⊆ {∅, 1o} |
26 | | df2o3 8336 |
. . . . 5
⊢
2o = {∅, 1o} |
27 | 25, 12, 26 | 3sstr4i 3969 |
. . . 4
⊢
1o ⊆ 2o |
28 | | domssl 8819 |
. . . 4
⊢
((1o ⊆ 2o ∧ 2o ≼ 𝐴) → 1o ≼
𝐴) |
29 | 27, 28 | mpan 688 |
. . 3
⊢
(2o ≼ 𝐴 → 1o ≼ 𝐴) |
30 | | snnen2o 9058 |
. . . . . . . . . . . 12
⊢ ¬
{𝑦} ≈
2o |
31 | 13 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ∅ ∈ V) |
32 | | 1oex 8338 |
. . . . . . . . . . . . . . . . 17
⊢
1o ∈ V |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ 1o ∈ V) |
34 | | 1n0 8349 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ≠ ∅ |
35 | 34 | nesymi 2999 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
∅ = 1o |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ¬ ∅ = 1o) |
37 | 31, 33, 36 | enpr2d 8874 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ {∅, 1o} ≈ 2o) |
38 | 37 | mptru 1546 |
. . . . . . . . . . . . . 14
⊢ {∅,
1o} ≈ 2o |
39 | 26, 38 | eqbrtri 5102 |
. . . . . . . . . . . . 13
⊢
2o ≈ 2o |
40 | | breq1 5084 |
. . . . . . . . . . . . 13
⊢
(2o = {𝑦}
→ (2o ≈ 2o ↔ {𝑦} ≈ 2o)) |
41 | 39, 40 | mpbii 232 |
. . . . . . . . . . . 12
⊢
(2o = {𝑦}
→ {𝑦} ≈
2o) |
42 | 30, 41 | mto 196 |
. . . . . . . . . . 11
⊢ ¬
2o = {𝑦} |
43 | 42 | nex 1800 |
. . . . . . . . . 10
⊢ ¬
∃𝑦2o =
{𝑦} |
44 | | 2on0 8344 |
. . . . . . . . . . 11
⊢
2o ≠ ∅ |
45 | | f1cdmsn 7186 |
. . . . . . . . . . 11
⊢ ((𝑓:2o–1-1→{𝑥} ∧ 2o ≠ ∅) →
∃𝑦2o =
{𝑦}) |
46 | 44, 45 | mpan2 689 |
. . . . . . . . . 10
⊢ (𝑓:2o–1-1→{𝑥} → ∃𝑦2o = {𝑦}) |
47 | 43, 46 | mto 196 |
. . . . . . . . 9
⊢ ¬
𝑓:2o–1-1→{𝑥} |
48 | 47 | nex 1800 |
. . . . . . . 8
⊢ ¬
∃𝑓 𝑓:2o–1-1→{𝑥} |
49 | | brdomi 8779 |
. . . . . . . 8
⊢
(2o ≼ {𝑥} → ∃𝑓 𝑓:2o–1-1→{𝑥}) |
50 | 48, 49 | mto 196 |
. . . . . . 7
⊢ ¬
2o ≼ {𝑥} |
51 | | breq2 5085 |
. . . . . . 7
⊢ (𝐴 = {𝑥} → (2o ≼ 𝐴 ↔ 2o ≼
{𝑥})) |
52 | 50, 51 | mtbiri 327 |
. . . . . 6
⊢ (𝐴 = {𝑥} → ¬ 2o ≼ 𝐴) |
53 | 52 | con2i 139 |
. . . . 5
⊢
(2o ≼ 𝐴 → ¬ 𝐴 = {𝑥}) |
54 | 53 | nexdv 1937 |
. . . 4
⊢
(2o ≼ 𝐴 → ¬ ∃𝑥 𝐴 = {𝑥}) |
55 | | reldom 8770 |
. . . . . . 7
⊢ Rel
≼ |
56 | 55 | brrelex2i 5655 |
. . . . . 6
⊢
(2o ≼ 𝐴 → 𝐴 ∈ V) |
57 | | breng 8773 |
. . . . . . 7
⊢
((1o ∈ V ∧ 𝐴 ∈ V) → (1o ≈
𝐴 ↔ ∃𝑓 𝑓:1o–1-1-onto→𝐴)) |
58 | 32, 57 | mpan 688 |
. . . . . 6
⊢ (𝐴 ∈ V → (1o
≈ 𝐴 ↔
∃𝑓 𝑓:1o–1-1-onto→𝐴)) |
59 | 56, 58 | syl 17 |
. . . . 5
⊢
(2o ≼ 𝐴 → (1o ≈ 𝐴 ↔ ∃𝑓 𝑓:1o–1-1-onto→𝐴)) |
60 | 29, 4 | sylibr 233 |
. . . . . . 7
⊢
(2o ≼ 𝐴 → ∅ ≺ 𝐴) |
61 | 56, 6 | syl 17 |
. . . . . . 7
⊢
(2o ≼ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
62 | 60, 61 | mpbid 231 |
. . . . . 6
⊢
(2o ≼ 𝐴 → 𝐴 ≠ ∅) |
63 | | f1ocnv 6758 |
. . . . . . . . . 10
⊢ (𝑓:1o–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→1o) |
64 | | f1of1 6745 |
. . . . . . . . . . 11
⊢ (◡𝑓:𝐴–1-1-onto→1o → ◡𝑓:𝐴–1-1→1o) |
65 | | f1eq3 6697 |
. . . . . . . . . . . 12
⊢
(1o = {∅} → (◡𝑓:𝐴–1-1→1o ↔ ◡𝑓:𝐴–1-1→{∅})) |
66 | 12, 65 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (◡𝑓:𝐴–1-1→1o ↔ ◡𝑓:𝐴–1-1→{∅}) |
67 | 64, 66 | sylib 217 |
. . . . . . . . . 10
⊢ (◡𝑓:𝐴–1-1-onto→1o → ◡𝑓:𝐴–1-1→{∅}) |
68 | 63, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:1o–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1→{∅}) |
69 | | f1cdmsn 7186 |
. . . . . . . . 9
⊢ ((◡𝑓:𝐴–1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
70 | 68, 69 | sylan 581 |
. . . . . . . 8
⊢ ((𝑓:1o–1-1-onto→𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
71 | 70 | expcom 415 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → (𝑓:1o–1-1-onto→𝐴 → ∃𝑥 𝐴 = {𝑥})) |
72 | 71 | exlimdv 1934 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∃𝑓 𝑓:1o–1-1-onto→𝐴 → ∃𝑥 𝐴 = {𝑥})) |
73 | 62, 72 | syl 17 |
. . . . 5
⊢
(2o ≼ 𝐴 → (∃𝑓 𝑓:1o–1-1-onto→𝐴 → ∃𝑥 𝐴 = {𝑥})) |
74 | 59, 73 | sylbid 239 |
. . . 4
⊢
(2o ≼ 𝐴 → (1o ≈ 𝐴 → ∃𝑥 𝐴 = {𝑥})) |
75 | 54, 74 | mtod 197 |
. . 3
⊢
(2o ≼ 𝐴 → ¬ 1o ≈ 𝐴) |
76 | | brsdom 8796 |
. . 3
⊢
(1o ≺ 𝐴 ↔ (1o ≼ 𝐴 ∧ ¬ 1o
≈ 𝐴)) |
77 | 29, 75, 76 | sylanbrc 584 |
. 2
⊢
(2o ≼ 𝐴 → 1o ≺ 𝐴) |
78 | 24, 77 | impbii 208 |
1
⊢
(1o ≺ 𝐴 ↔ 2o ≼ 𝐴) |