MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 24665
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑉   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)   𝑉(𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3204 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2991 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7147 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7172 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6749 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76ad2antlr 726 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 20607 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋:𝐼⟶ℕ0)
109feqmptd 6712 . . . . . . . . . . . 12 ((𝐼𝑉𝑋𝐴) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 484 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7155 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20099 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20119 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20100 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20117 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 19331 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 simpll 766 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼𝑉)
209adantr 484 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
2120ffvelrnda 6832 . . . . . . . . . . . 12 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2221nn0cnd 11949 . . . . . . . . . . 11 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
238psrbagfsupp 20752 . . . . . . . . . . . . . 14 ((𝑋𝐴𝐼𝑉) → 𝑋 finSupp 0)
2423ancoms 462 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋 finSupp 0)
2524adantr 484 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 finSupp 0)
2611, 25eqbrtrrd 5057 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
27 incom 4131 . . . . . . . . . . . . 13 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐼 ∖ {𝑥}))
28 disjdif 4382 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
2927, 28eqtri 2824 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4706 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2807 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 727 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 19046 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2840 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
36 difexg 5198 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝐼 ∖ {𝑥}) ∈ V)
3736ad2antrr 725 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
38 nn0subm 20150 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3938a1i 11 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
40 eldifi 4057 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelrn 6830 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4220, 40, 41syl2an 598 . . . . . . . . . . . . 13 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 6860 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 6968 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4544ad2antrr 725 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
46 funmpt 6366 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4746a1i 11 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
48 funmpt 6366 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
49 difss 4062 . . . . . . . . . . . . . . . 16 (𝐼 ∖ {𝑥}) ⊆ 𝐼
50 resmpt 5876 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
52 resss 5847 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5351, 52eqsstrri 3953 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
54 mptexg 6965 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
5554ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
56 funsssuppss 7843 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5748, 53, 55, 56mp3an12i 1462 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
58 fsuppsssupp 8837 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5945, 47, 26, 57, 58syl22anc 837 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6014, 18, 37, 39, 43, 59gsumsubmcl 19036 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
61 ringmnd 19304 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
6216, 61mp1i 13 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ Mnd)
63 simprl 770 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6420, 63ffvelrnd 6833 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6564nn0cnd 11949 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
66 fveq2 6649 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6713, 66gsumsn 19071 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6862, 63, 65, 67syl3anc 1368 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
69 simprr 772 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ≠ 0)
7069, 2sylib 221 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
71 elnn0 11891 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
7264, 71sylib 221 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
73 orel2 888 . . . . . . . . . . . . 13 (¬ (𝑋𝑥) = 0 → (((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0) → (𝑋𝑥) ∈ ℕ))
7470, 72, 73sylc 65 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7568, 74eqeltrd 2893 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
76 nn0nnaddcl 11920 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7760, 75, 76syl2anc 587 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7877nnne0d 11679 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7935, 78eqnetrd 3057 . . . . . . . 8 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
8079expr 460 . . . . . . 7 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
812, 80syl5bir 246 . . . . . 6 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8281rexlimdva 3246 . . . . 5 ((𝐼𝑉𝑋𝐴) → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
831, 82syl5bir 246 . . . 4 ((𝐼𝑉𝑋𝐴) → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8483necon4bd 3010 . . 3 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
859ffnd 6492 . . . . 5 ((𝐼𝑉𝑋𝐴) → 𝑋 Fn 𝐼)
86 0nn0 11904 . . . . . 6 0 ∈ ℕ0
87 fnconstg 6545 . . . . . 6 (0 ∈ ℕ0 → (𝐼 × {0}) Fn 𝐼)
8886, 87mp1i 13 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) Fn 𝐼)
89 eqfnfv 6783 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
9085, 88, 89syl2anc 587 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
91 c0ex 10628 . . . . . . 7 0 ∈ V
9291fvconst2 6947 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
9392eqeq2d 2812 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
9493ralbiia 3135 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
9590, 94syl6bb 290 . . 3 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
9684, 95sylibrd 262 . 2 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
978psrbag0 20737 . . . . . 6 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐴)
9897adantr 484 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) ∈ 𝐴)
99 oveq2 7147 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
100 ovex 7172 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
10199, 4, 100fvmpt 6749 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
10298, 101syl 17 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
103 fconstmpt 5582 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
104103oveq2i 7150 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
10516, 61ax-mp 5 . . . . . . 7 fld ∈ Mnd
10614gsumz 17996 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝐼𝑉) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
107105, 106mpan 689 . . . . . 6 (𝐼𝑉 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
108107adantr 484 . . . . 5 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
109104, 108syl5eq 2848 . . . 4 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝐼 × {0})) = 0)
110102, 109eqtrd 2836 . . 3 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = 0)
111 fveqeq2 6658 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
112110, 111syl5ibrcom 250 . 2 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
11396, 112impbid 215 1 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  cdif 3881  cun 3882  cin 3883  wss 3884  c0 4246  {csn 4528   class class class wbr 5033  cmpt 5113   × cxp 5521  ccnv 5522  cres 5525  cima 5526  Fun wfun 6322   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139   supp csupp 7817  m cmap 8393  Fincfn 8496   finSupp cfsupp 8821  cc 10528  0cc0 10530   + caddc 10533  cn 11629  0cn0 11889   Σg cgsu 16710  Mndcmnd 17907  SubMndcsubmnd 17951  CMndccmn 18902  Ringcrg 19294  fldccnfld 20095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-gsum 16712  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-cnfld 20096
This theorem is referenced by:  mdegle0  24682
  Copyright terms: Public domain W3C validator