MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 26119
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3106 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2947 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7456 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7481 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 7029 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76adantr 480 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21961 . . . . . . . . . . . . 13 (𝑋𝐴𝑋:𝐼⟶ℕ0)
109feqmptd 6990 . . . . . . . . . . . 12 (𝑋𝐴𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7464 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 21391 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 21428 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 21393 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 21426 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 20305 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 id 22 . . . . . . . . . . . . 13 (𝑋𝐴𝑋𝐴)
209ffnd 6748 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 Fn 𝐼)
2119, 20fndmexd 7944 . . . . . . . . . . . 12 (𝑋𝐴𝐼 ∈ V)
2221adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 ∈ V)
239ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2423nn0cnd 12615 . . . . . . . . . . . 12 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
2524adantlr 714 . . . . . . . . . . 11 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
268psrbagfsupp 21962 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 finSupp 0)
2710, 26eqbrtrrd 5190 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
2827adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
29 disjdifr 4496 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4835 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2746 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 727 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 22, 25, 28, 30, 33gsumsplit2 19971 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2784 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
3622difexd 5349 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
37 nn0subm 21463 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3837a1i 11 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
399adantr 480 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
40 eldifi 4154 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelcdm 7115 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4239, 40, 41syl2an 595 . . . . . . . . . . . . 13 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 7149 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7261 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
45 funmpt 6616 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4645a1i 11 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
47 funmpt 6616 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
48 difss 4159 . . . . . . . . . . . . . . 15 (𝐼 ∖ {𝑥}) ⊆ 𝐼
49 mptss 6071 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5122mptexd 7261 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
52 funsssuppss 8231 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5347, 50, 51, 52mp3an12i 1465 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
54 fsuppsssupp 9450 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5544, 46, 28, 53, 54syl22anc 838 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5614, 18, 36, 38, 43, 55gsumsubmcl 19961 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
57 ringmnd 20270 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5816, 57ax-mp 5 . . . . . . . . . . . . 13 fld ∈ Mnd
59 simprl 770 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6039, 59ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6160nn0cnd 12615 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
62 fveq2 6920 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6313, 62gsumsn 19996 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6458, 59, 61, 63mp3an2i 1466 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
65 elnn0 12555 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
6660, 65sylib 218 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
67 neneq 2952 . . . . . . . . . . . . . 14 ((𝑋𝑥) ≠ 0 → ¬ (𝑋𝑥) = 0)
6867ad2antll 728 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
6966, 68olcnd 876 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7064, 69eqeltrd 2844 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
71 nn0nnaddcl 12584 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7256, 70, 71syl2anc 583 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7372nnne0d 12343 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7435, 73eqnetrd 3014 . . . . . . . 8 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
7574expr 456 . . . . . . 7 ((𝑋𝐴𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
762, 75biimtrrid 243 . . . . . 6 ((𝑋𝐴𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7776rexlimdva 3161 . . . . 5 (𝑋𝐴 → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
781, 77biimtrrid 243 . . . 4 (𝑋𝐴 → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7978necon4bd 2966 . . 3 (𝑋𝐴 → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
80 c0ex 11284 . . . . . 6 0 ∈ V
81 fnconstg 6809 . . . . . 6 (0 ∈ V → (𝐼 × {0}) Fn 𝐼)
8280, 81mp1i 13 . . . . 5 (𝑋𝐴 → (𝐼 × {0}) Fn 𝐼)
83 eqfnfv 7064 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8420, 82, 83syl2anc 583 . . . 4 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8580fvconst2 7241 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
8685eqeq2d 2751 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
8786ralbiia 3097 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
8884, 87bitrdi 287 . . 3 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
8979, 88sylibrd 259 . 2 (𝑋𝐴 → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
908psrbag0 22109 . . . . 5 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐴)
91 oveq2 7456 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
92 ovex 7481 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
9391, 4, 92fvmpt 7029 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
9421, 90, 933syl 18 . . . 4 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
95 fconstmpt 5762 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
9695oveq2i 7459 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
9714gsumz 18871 . . . . . 6 ((ℂfld ∈ Mnd ∧ 𝐼 ∈ V) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9858, 21, 97sylancr 586 . . . . 5 (𝑋𝐴 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9996, 98eqtrid 2792 . . . 4 (𝑋𝐴 → (ℂfld Σg (𝐼 × {0})) = 0)
10094, 99eqtrd 2780 . . 3 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = 0)
101 fveqeq2 6929 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
102100, 101syl5ibrcom 247 . 2 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
10389, 102impbid 212 1 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  cc 11182  0cc0 11184   + caddc 11187  cn 12293  0cn0 12553   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  CMndccmn 19822  Ringcrg 20260  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-cnfld 21388
This theorem is referenced by:  mdegle0  26136
  Copyright terms: Public domain W3C validator