MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 25205
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3167 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2945 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7276 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7301 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6869 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76adantr 480 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21102 . . . . . . . . . . . . 13 (𝑋𝐴𝑋:𝐼⟶ℕ0)
109feqmptd 6831 . . . . . . . . . . . 12 (𝑋𝐴𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7284 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20582 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20603 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20583 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20601 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 19801 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 id 22 . . . . . . . . . . . . 13 (𝑋𝐴𝑋𝐴)
209ffnd 6597 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 Fn 𝐼)
2119, 20fndmexd 7740 . . . . . . . . . . . 12 (𝑋𝐴𝐼 ∈ V)
2221adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 ∈ V)
239ffvelrnda 6955 . . . . . . . . . . . . 13 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2423nn0cnd 12278 . . . . . . . . . . . 12 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
2524adantlr 711 . . . . . . . . . . 11 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
268psrbagfsupp 21104 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 finSupp 0)
2710, 26eqbrtrrd 5102 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
2827adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
29 disjdifr 4411 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4748 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2745 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 724 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 22, 25, 28, 30, 33gsumsplit2 19511 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2783 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
3622difexd 5256 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
37 nn0subm 20634 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3837a1i 11 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
399adantr 480 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
40 eldifi 4065 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelrn 6953 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4239, 40, 41syl2an 595 . . . . . . . . . . . . 13 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 6983 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7094 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
45 funmpt 6468 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4645a1i 11 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
47 funmpt 6468 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
48 difss 4070 . . . . . . . . . . . . . . 15 (𝐼 ∖ {𝑥}) ⊆ 𝐼
49 mptss 5947 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5122mptexd 7094 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
52 funsssuppss 7990 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5347, 50, 51, 52mp3an12i 1463 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
54 fsuppsssupp 9105 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5544, 46, 28, 53, 54syl22anc 835 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5614, 18, 36, 38, 43, 55gsumsubmcl 19501 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
57 ringmnd 19774 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5816, 57ax-mp 5 . . . . . . . . . . . . 13 fld ∈ Mnd
59 simprl 767 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6039, 59ffvelrnd 6956 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6160nn0cnd 12278 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
62 fveq2 6768 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6313, 62gsumsn 19536 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6458, 59, 61, 63mp3an2i 1464 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
65 elnn0 12218 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
6660, 65sylib 217 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
67 neneq 2950 . . . . . . . . . . . . . 14 ((𝑋𝑥) ≠ 0 → ¬ (𝑋𝑥) = 0)
6867ad2antll 725 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
6966, 68olcnd 873 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7064, 69eqeltrd 2840 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
71 nn0nnaddcl 12247 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7256, 70, 71syl2anc 583 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7372nnne0d 12006 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7435, 73eqnetrd 3012 . . . . . . . 8 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
7574expr 456 . . . . . . 7 ((𝑋𝐴𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
762, 75syl5bir 242 . . . . . 6 ((𝑋𝐴𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7776rexlimdva 3214 . . . . 5 (𝑋𝐴 → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
781, 77syl5bir 242 . . . 4 (𝑋𝐴 → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7978necon4bd 2964 . . 3 (𝑋𝐴 → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
80 c0ex 10953 . . . . . 6 0 ∈ V
81 fnconstg 6658 . . . . . 6 (0 ∈ V → (𝐼 × {0}) Fn 𝐼)
8280, 81mp1i 13 . . . . 5 (𝑋𝐴 → (𝐼 × {0}) Fn 𝐼)
83 eqfnfv 6903 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8420, 82, 83syl2anc 583 . . . 4 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8580fvconst2 7073 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
8685eqeq2d 2750 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
8786ralbiia 3091 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
8884, 87bitrdi 286 . . 3 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
8979, 88sylibrd 258 . 2 (𝑋𝐴 → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
908psrbag0 21251 . . . . 5 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐴)
91 oveq2 7276 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
92 ovex 7301 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
9391, 4, 92fvmpt 6869 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
9421, 90, 933syl 18 . . . 4 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
95 fconstmpt 5648 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
9695oveq2i 7279 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
9714gsumz 18455 . . . . . 6 ((ℂfld ∈ Mnd ∧ 𝐼 ∈ V) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9858, 21, 97sylancr 586 . . . . 5 (𝑋𝐴 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9996, 98eqtrid 2791 . . . 4 (𝑋𝐴 → (ℂfld Σg (𝐼 × {0})) = 0)
10094, 99eqtrd 2779 . . 3 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = 0)
101 fveqeq2 6777 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
102100, 101syl5ibrcom 246 . 2 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
10389, 102impbid 211 1 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  cdif 3888  cun 3889  cin 3890  wss 3891  c0 4261  {csn 4566   class class class wbr 5078  cmpt 5161   × cxp 5586  ccnv 5587  cima 5591  Fun wfun 6424   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268   supp csupp 7961  m cmap 8589  Fincfn 8707   finSupp cfsupp 9089  cc 10853  0cc0 10855   + caddc 10858  cn 11956  0cn0 12216   Σg cgsu 17132  Mndcmnd 18366  SubMndcsubmnd 18410  CMndccmn 19367  Ringcrg 19764  fldccnfld 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-gsum 17134  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-cnfld 20579
This theorem is referenced by:  mdegle0  25223
  Copyright terms: Public domain W3C validator