MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 25334
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3101 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2942 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7354 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7379 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6940 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76adantr 482 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21231 . . . . . . . . . . . . 13 (𝑋𝐴𝑋:𝐼⟶ℕ0)
109feqmptd 6902 . . . . . . . . . . . 12 (𝑋𝐴𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 482 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7362 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20711 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20732 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20712 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20730 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 19919 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 id 22 . . . . . . . . . . . . 13 (𝑋𝐴𝑋𝐴)
209ffnd 6661 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 Fn 𝐼)
2119, 20fndmexd 7830 . . . . . . . . . . . 12 (𝑋𝐴𝐼 ∈ V)
2221adantr 482 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 ∈ V)
239ffvelcdmda 7026 . . . . . . . . . . . . 13 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2423nn0cnd 12405 . . . . . . . . . . . 12 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
2524adantlr 713 . . . . . . . . . . 11 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
268psrbagfsupp 21233 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 finSupp 0)
2710, 26eqbrtrrd 5124 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
2827adantr 482 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
29 disjdifr 4427 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4765 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2743 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 726 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 22, 25, 28, 30, 33gsumsplit2 19629 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2781 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
3622difexd 5281 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
37 nn0subm 20763 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3837a1i 11 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
399adantr 482 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
40 eldifi 4081 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelcdm 7024 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4239, 40, 41syl2an 597 . . . . . . . . . . . . 13 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 7054 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7165 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
45 funmpt 6531 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4645a1i 11 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
47 funmpt 6531 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
48 difss 4086 . . . . . . . . . . . . . . 15 (𝐼 ∖ {𝑥}) ⊆ 𝐼
49 mptss 5989 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5122mptexd 7165 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
52 funsssuppss 8085 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5347, 50, 51, 52mp3an12i 1465 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
54 fsuppsssupp 9251 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5544, 46, 28, 53, 54syl22anc 837 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5614, 18, 36, 38, 43, 55gsumsubmcl 19619 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
57 ringmnd 19892 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5816, 57ax-mp 5 . . . . . . . . . . . . 13 fld ∈ Mnd
59 simprl 769 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6039, 59ffvelcdmd 7027 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6160nn0cnd 12405 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
62 fveq2 6834 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6313, 62gsumsn 19654 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6458, 59, 61, 63mp3an2i 1466 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
65 elnn0 12345 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
6660, 65sylib 217 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
67 neneq 2947 . . . . . . . . . . . . . 14 ((𝑋𝑥) ≠ 0 → ¬ (𝑋𝑥) = 0)
6867ad2antll 727 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
6966, 68olcnd 875 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7064, 69eqeltrd 2838 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
71 nn0nnaddcl 12374 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7256, 70, 71syl2anc 585 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7372nnne0d 12133 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7435, 73eqnetrd 3009 . . . . . . . 8 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
7574expr 458 . . . . . . 7 ((𝑋𝐴𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
762, 75syl5bir 243 . . . . . 6 ((𝑋𝐴𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7776rexlimdva 3150 . . . . 5 (𝑋𝐴 → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
781, 77syl5bir 243 . . . 4 (𝑋𝐴 → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7978necon4bd 2961 . . 3 (𝑋𝐴 → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
80 c0ex 11079 . . . . . 6 0 ∈ V
81 fnconstg 6722 . . . . . 6 (0 ∈ V → (𝐼 × {0}) Fn 𝐼)
8280, 81mp1i 13 . . . . 5 (𝑋𝐴 → (𝐼 × {0}) Fn 𝐼)
83 eqfnfv 6974 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8420, 82, 83syl2anc 585 . . . 4 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8580fvconst2 7144 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
8685eqeq2d 2748 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
8786ralbiia 3092 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
8884, 87bitrdi 287 . . 3 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
8979, 88sylibrd 259 . 2 (𝑋𝐴 → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
908psrbag0 21380 . . . . 5 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐴)
91 oveq2 7354 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
92 ovex 7379 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
9391, 4, 92fvmpt 6940 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
9421, 90, 933syl 18 . . . 4 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
95 fconstmpt 5687 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
9695oveq2i 7357 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
9714gsumz 18576 . . . . . 6 ((ℂfld ∈ Mnd ∧ 𝐼 ∈ V) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9858, 21, 97sylancr 588 . . . . 5 (𝑋𝐴 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9996, 98eqtrid 2789 . . . 4 (𝑋𝐴 → (ℂfld Σg (𝐼 × {0})) = 0)
10094, 99eqtrd 2777 . . 3 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = 0)
101 fveqeq2 6843 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
102100, 101syl5ibrcom 247 . 2 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
10389, 102impbid 211 1 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  {crab 3405  Vcvv 3443  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4277  {csn 4581   class class class wbr 5100  cmpt 5183   × cxp 5625  ccnv 5626  cima 5630  Fun wfun 6482   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7346   supp csupp 8056  m cmap 8695  Fincfn 8813   finSupp cfsupp 9235  cc 10979  0cc0 10981   + caddc 10984  cn 12083  0cn0 12343   Σg cgsu 17253  Mndcmnd 18487  SubMndcsubmnd 18531  CMndccmn 19486  Ringcrg 19882  fldccnfld 20707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-addf 11060  ax-mulf 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7604  df-om 7790  df-1st 7908  df-2nd 7909  df-supp 8057  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fsupp 9236  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-fz 13350  df-fzo 13493  df-seq 13832  df-hash 14155  df-struct 16950  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-starv 17079  df-tset 17083  df-ple 17084  df-ds 17086  df-unif 17087  df-0g 17254  df-gsum 17255  df-mre 17397  df-mrc 17398  df-acs 17400  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-submnd 18533  df-grp 18681  df-minusg 18682  df-mulg 18802  df-cntz 19024  df-cmn 19488  df-abl 19489  df-mgp 19820  df-ur 19837  df-ring 19884  df-cring 19885  df-cnfld 20708
This theorem is referenced by:  mdegle0  25352
  Copyright terms: Public domain W3C validator