MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 25965
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3082 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2926 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7395 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7420 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6968 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76adantr 480 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21827 . . . . . . . . . . . . 13 (𝑋𝐴𝑋:𝐼⟶ℕ0)
109feqmptd 6929 . . . . . . . . . . . 12 (𝑋𝐴𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7403 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 21268 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 21304 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 21270 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 21302 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 20191 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 id 22 . . . . . . . . . . . . 13 (𝑋𝐴𝑋𝐴)
209ffnd 6689 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 Fn 𝐼)
2119, 20fndmexd 7880 . . . . . . . . . . . 12 (𝑋𝐴𝐼 ∈ V)
2221adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 ∈ V)
239ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2423nn0cnd 12505 . . . . . . . . . . . 12 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
2524adantlr 715 . . . . . . . . . . 11 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
268psrbagfsupp 21828 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 finSupp 0)
2710, 26eqbrtrrd 5131 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
2827adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
29 disjdifr 4436 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4774 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2735 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 728 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 22, 25, 28, 30, 33gsumsplit2 19859 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2768 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
3622difexd 5286 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
37 nn0subm 21339 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3837a1i 11 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
399adantr 480 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
40 eldifi 4094 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4239, 40, 41syl2an 596 . . . . . . . . . . . . 13 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 7087 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7198 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
45 funmpt 6554 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4645a1i 11 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
47 funmpt 6554 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
48 difss 4099 . . . . . . . . . . . . . . 15 (𝐼 ∖ {𝑥}) ⊆ 𝐼
49 mptss 6013 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5122mptexd 7198 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
52 funsssuppss 8169 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5347, 50, 51, 52mp3an12i 1467 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
54 fsuppsssupp 9332 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5544, 46, 28, 53, 54syl22anc 838 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5614, 18, 36, 38, 43, 55gsumsubmcl 19849 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
57 ringmnd 20152 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5816, 57ax-mp 5 . . . . . . . . . . . . 13 fld ∈ Mnd
59 simprl 770 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6039, 59ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6160nn0cnd 12505 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
62 fveq2 6858 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6313, 62gsumsn 19884 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6458, 59, 61, 63mp3an2i 1468 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
65 elnn0 12444 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
6660, 65sylib 218 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
67 neneq 2931 . . . . . . . . . . . . . 14 ((𝑋𝑥) ≠ 0 → ¬ (𝑋𝑥) = 0)
6867ad2antll 729 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
6966, 68olcnd 877 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7064, 69eqeltrd 2828 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
71 nn0nnaddcl 12473 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7256, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7372nnne0d 12236 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7435, 73eqnetrd 2992 . . . . . . . 8 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
7574expr 456 . . . . . . 7 ((𝑋𝐴𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
762, 75biimtrrid 243 . . . . . 6 ((𝑋𝐴𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7776rexlimdva 3134 . . . . 5 (𝑋𝐴 → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
781, 77biimtrrid 243 . . . 4 (𝑋𝐴 → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7978necon4bd 2945 . . 3 (𝑋𝐴 → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
80 c0ex 11168 . . . . . 6 0 ∈ V
81 fnconstg 6748 . . . . . 6 (0 ∈ V → (𝐼 × {0}) Fn 𝐼)
8280, 81mp1i 13 . . . . 5 (𝑋𝐴 → (𝐼 × {0}) Fn 𝐼)
83 eqfnfv 7003 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8420, 82, 83syl2anc 584 . . . 4 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8580fvconst2 7178 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
8685eqeq2d 2740 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
8786ralbiia 3073 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
8884, 87bitrdi 287 . . 3 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
8979, 88sylibrd 259 . 2 (𝑋𝐴 → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
908psrbag0 21969 . . . . 5 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐴)
91 oveq2 7395 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
92 ovex 7420 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
9391, 4, 92fvmpt 6968 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
9421, 90, 933syl 18 . . . 4 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
95 fconstmpt 5700 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
9695oveq2i 7398 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
9714gsumz 18763 . . . . . 6 ((ℂfld ∈ Mnd ∧ 𝐼 ∈ V) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9858, 21, 97sylancr 587 . . . . 5 (𝑋𝐴 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9996, 98eqtrid 2776 . . . 4 (𝑋𝐴 → (ℂfld Σg (𝐼 × {0})) = 0)
10094, 99eqtrd 2764 . . 3 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = 0)
101 fveqeq2 6867 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
102100, 101syl5ibrcom 247 . 2 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
10389, 102impbid 212 1 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  cc 11066  0cc0 11068   + caddc 11071  cn 12186  0cn0 12442   Σg cgsu 17403  Mndcmnd 18661  SubMndcsubmnd 18709  CMndccmn 19710  Ringcrg 20142  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-cnfld 21265
This theorem is referenced by:  mdegle0  25982
  Copyright terms: Public domain W3C validator