MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 26099
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3100 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2941 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7439 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7464 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 7016 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76adantr 480 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21938 . . . . . . . . . . . . 13 (𝑋𝐴𝑋:𝐼⟶ℕ0)
109feqmptd 6977 . . . . . . . . . . . 12 (𝑋𝐴𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7447 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 21368 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 21405 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 21370 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 21403 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 20279 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 id 22 . . . . . . . . . . . . 13 (𝑋𝐴𝑋𝐴)
209ffnd 6737 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 Fn 𝐼)
2119, 20fndmexd 7926 . . . . . . . . . . . 12 (𝑋𝐴𝐼 ∈ V)
2221adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 ∈ V)
239ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2423nn0cnd 12589 . . . . . . . . . . . 12 ((𝑋𝐴𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
2524adantlr 715 . . . . . . . . . . 11 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
268psrbagfsupp 21939 . . . . . . . . . . . . 13 (𝑋𝐴𝑋 finSupp 0)
2710, 26eqbrtrrd 5167 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
2827adantr 480 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
29 disjdifr 4473 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4810 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2743 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 728 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 22, 25, 28, 30, 33gsumsplit2 19947 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2781 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
3622difexd 5331 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
37 nn0subm 21440 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3837a1i 11 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
399adantr 480 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
40 eldifi 4131 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelcdm 7101 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4239, 40, 41syl2an 596 . . . . . . . . . . . . 13 (((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 7135 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7244 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
45 funmpt 6604 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4645a1i 11 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
47 funmpt 6604 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
48 difss 4136 . . . . . . . . . . . . . . 15 (𝐼 ∖ {𝑥}) ⊆ 𝐼
49 mptss 6060 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5122mptexd 7244 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
52 funsssuppss 8215 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5347, 50, 51, 52mp3an12i 1467 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
54 fsuppsssupp 9421 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5544, 46, 28, 53, 54syl22anc 839 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5614, 18, 36, 38, 43, 55gsumsubmcl 19937 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
57 ringmnd 20240 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5816, 57ax-mp 5 . . . . . . . . . . . . 13 fld ∈ Mnd
59 simprl 771 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6039, 59ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6160nn0cnd 12589 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
62 fveq2 6906 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6313, 62gsumsn 19972 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6458, 59, 61, 63mp3an2i 1468 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
65 elnn0 12528 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
6660, 65sylib 218 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
67 neneq 2946 . . . . . . . . . . . . . 14 ((𝑋𝑥) ≠ 0 → ¬ (𝑋𝑥) = 0)
6867ad2antll 729 . . . . . . . . . . . . 13 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
6966, 68olcnd 878 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7064, 69eqeltrd 2841 . . . . . . . . . . 11 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
71 nn0nnaddcl 12557 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7256, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7372nnne0d 12316 . . . . . . . . 9 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7435, 73eqnetrd 3008 . . . . . . . 8 ((𝑋𝐴 ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
7574expr 456 . . . . . . 7 ((𝑋𝐴𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
762, 75biimtrrid 243 . . . . . 6 ((𝑋𝐴𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7776rexlimdva 3155 . . . . 5 (𝑋𝐴 → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
781, 77biimtrrid 243 . . . 4 (𝑋𝐴 → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
7978necon4bd 2960 . . 3 (𝑋𝐴 → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
80 c0ex 11255 . . . . . 6 0 ∈ V
81 fnconstg 6796 . . . . . 6 (0 ∈ V → (𝐼 × {0}) Fn 𝐼)
8280, 81mp1i 13 . . . . 5 (𝑋𝐴 → (𝐼 × {0}) Fn 𝐼)
83 eqfnfv 7051 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8420, 82, 83syl2anc 584 . . . 4 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
8580fvconst2 7224 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
8685eqeq2d 2748 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
8786ralbiia 3091 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
8884, 87bitrdi 287 . . 3 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
8979, 88sylibrd 259 . 2 (𝑋𝐴 → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
908psrbag0 22086 . . . . 5 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐴)
91 oveq2 7439 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
92 ovex 7464 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
9391, 4, 92fvmpt 7016 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
9421, 90, 933syl 18 . . . 4 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
95 fconstmpt 5747 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
9695oveq2i 7442 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
9714gsumz 18849 . . . . . 6 ((ℂfld ∈ Mnd ∧ 𝐼 ∈ V) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9858, 21, 97sylancr 587 . . . . 5 (𝑋𝐴 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
9996, 98eqtrid 2789 . . . 4 (𝑋𝐴 → (ℂfld Σg (𝐼 × {0})) = 0)
10094, 99eqtrd 2777 . . 3 (𝑋𝐴 → (𝐻‘(𝐼 × {0})) = 0)
101 fveqeq2 6915 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
102100, 101syl5ibrcom 247 . 2 (𝑋𝐴 → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
10389, 102impbid 212 1 (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cc 11153  0cc0 11155   + caddc 11158  cn 12266  0cn0 12526   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795  CMndccmn 19798  Ringcrg 20230  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-cring 20233  df-cnfld 21365
This theorem is referenced by:  mdegle0  26116
  Copyright terms: Public domain W3C validator