Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finnzfsuppd | Structured version Visualization version GIF version |
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
finnzfsuppd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
finnzfsuppd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
finnzfsuppd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
finnzfsuppd.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
finnzfsuppd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
Ref | Expression |
---|---|
finnzfsuppd | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finnzfsuppd.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | finnzfsuppd.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
3 | finnzfsuppd.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3, 2 | fndmexd 7753 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ V) |
5 | finnzfsuppd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
6 | elsuppfn 7987 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
7 | 2, 4, 5, 6 | syl3anc 1370 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 7 | biimpa 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍)) |
9 | 8 | simpld 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐷) |
10 | finnzfsuppd.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) | |
11 | 9, 10 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
12 | 8 | simprd 496 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹‘𝑥) ≠ 𝑍) |
13 | 12 | neneqd 2948 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹‘𝑥) = 𝑍) |
14 | 11, 13 | olcnd 874 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) |
15 | 14 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥 ∈ 𝐴)) |
16 | 15 | ssrdv 3927 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴) |
17 | 1, 16 | ssfid 9042 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
18 | fnfun 6533 | . . . 4 ⊢ (𝐹 Fn 𝐷 → Fun 𝐹) | |
19 | 2, 18 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
20 | funisfsupp 9133 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
21 | 19, 3, 5, 20 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
22 | 17, 21 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 class class class wbr 5074 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-supp 7978 df-1o 8297 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: mnringmulrcld 41846 |
Copyright terms: Public domain | W3C validator |