| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnzfsuppd | Structured version Visualization version GIF version | ||
| Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| finnzfsuppd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| finnzfsuppd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| finnzfsuppd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| finnzfsuppd.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| finnzfsuppd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
| Ref | Expression |
|---|---|
| finnzfsuppd | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finnzfsuppd.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | finnzfsuppd.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 3 | finnzfsuppd.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3, 2 | fndmexd 7842 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ V) |
| 5 | finnzfsuppd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 6 | elsuppfn 8108 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 8 | 7 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍)) |
| 9 | 8 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐷) |
| 10 | finnzfsuppd.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) | |
| 11 | 9, 10 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
| 12 | 8 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹‘𝑥) ≠ 𝑍) |
| 13 | 12 | neneqd 2934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹‘𝑥) = 𝑍) |
| 14 | 11, 13 | olcnd 877 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) |
| 15 | 14 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥 ∈ 𝐴)) |
| 16 | 15 | ssrdv 3936 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴) |
| 17 | 1, 16 | ssfid 9162 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 18 | fnfun 6588 | . . . 4 ⊢ (𝐹 Fn 𝐷 → Fun 𝐹) | |
| 19 | 2, 18 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 20 | funisfsupp 9260 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
| 21 | 19, 3, 5, 20 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
| 22 | 17, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 class class class wbr 5095 Fun wfun 6482 Fn wfn 6483 ‘cfv 6488 (class class class)co 7354 supp csupp 8098 Fincfn 8877 finSupp cfsupp 9254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-supp 8099 df-1o 8393 df-en 8878 df-fin 8881 df-fsupp 9255 |
| This theorem is referenced by: gsumfs2d 33044 mnringmulrcld 44348 |
| Copyright terms: Public domain | W3C validator |