| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnzfsuppd | Structured version Visualization version GIF version | ||
| Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| finnzfsuppd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| finnzfsuppd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| finnzfsuppd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| finnzfsuppd.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| finnzfsuppd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
| Ref | Expression |
|---|---|
| finnzfsuppd | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finnzfsuppd.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | finnzfsuppd.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 3 | finnzfsuppd.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3, 2 | fndmexd 7834 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ V) |
| 5 | finnzfsuppd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 6 | elsuppfn 8100 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 8 | 7 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍)) |
| 9 | 8 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐷) |
| 10 | finnzfsuppd.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) | |
| 11 | 9, 10 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
| 12 | 8 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹‘𝑥) ≠ 𝑍) |
| 13 | 12 | neneqd 2933 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹‘𝑥) = 𝑍) |
| 14 | 11, 13 | olcnd 877 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) |
| 15 | 14 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥 ∈ 𝐴)) |
| 16 | 15 | ssrdv 3940 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴) |
| 17 | 1, 16 | ssfid 9153 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 18 | fnfun 6581 | . . . 4 ⊢ (𝐹 Fn 𝐷 → Fun 𝐹) | |
| 19 | 2, 18 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 20 | funisfsupp 9251 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
| 21 | 19, 3, 5, 20 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
| 22 | 17, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 class class class wbr 5091 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 Fincfn 8869 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-supp 8091 df-1o 8385 df-en 8870 df-fin 8873 df-fsupp 9246 |
| This theorem is referenced by: gsumfs2d 33033 mnringmulrcld 44267 |
| Copyright terms: Public domain | W3C validator |