Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finnzfsuppd Structured version   Visualization version   GIF version

Theorem finnzfsuppd 44171
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
finnzfsuppd.1 (𝜑𝐹𝑉)
finnzfsuppd.2 (𝜑𝐹 Fn 𝐷)
finnzfsuppd.3 (𝜑𝑍𝑈)
finnzfsuppd.4 (𝜑𝐴 ∈ Fin)
finnzfsuppd.5 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
finnzfsuppd (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝑈(𝑥)   𝑉(𝑥)

Proof of Theorem finnzfsuppd
StepHypRef Expression
1 finnzfsuppd.4 . . 3 (𝜑𝐴 ∈ Fin)
2 finnzfsuppd.2 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
3 finnzfsuppd.1 . . . . . . . . . . 11 (𝜑𝐹𝑉)
43, 2fndmexd 7944 . . . . . . . . . 10 (𝜑𝐷 ∈ V)
5 finnzfsuppd.3 . . . . . . . . . 10 (𝜑𝑍𝑈)
6 elsuppfn 8211 . . . . . . . . . 10 ((𝐹 Fn 𝐷𝐷 ∈ V ∧ 𝑍𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
72, 4, 5, 6syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
87biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍))
98simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐷)
10 finnzfsuppd.5 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
119, 10syldan 590 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
128simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹𝑥) ≠ 𝑍)
1312neneqd 2951 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) = 𝑍)
1411, 13olcnd 876 . . . . 5 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐴)
1514ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥𝐴))
1615ssrdv 4014 . . 3 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴)
171, 16ssfid 9329 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 fnfun 6679 . . . 4 (𝐹 Fn 𝐷 → Fun 𝐹)
192, 18syl 17 . . 3 (𝜑 → Fun 𝐹)
20 funisfsupp 9437 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2119, 3, 5, 20syl3anc 1371 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2217, 21mpbird 257 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488   class class class wbr 5166  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  mnringmulrcld  44197
  Copyright terms: Public domain W3C validator