MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnzfsuppd Structured version   Visualization version   GIF version

Theorem finnzfsuppd 9385
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
finnzfsuppd.1 (𝜑𝐹𝑉)
finnzfsuppd.2 (𝜑𝐹 Fn 𝐷)
finnzfsuppd.3 (𝜑𝑍𝑈)
finnzfsuppd.4 (𝜑𝐴 ∈ Fin)
finnzfsuppd.5 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
finnzfsuppd (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝑈(𝑥)   𝑉(𝑥)

Proof of Theorem finnzfsuppd
StepHypRef Expression
1 finnzfsuppd.4 . . 3 (𝜑𝐴 ∈ Fin)
2 finnzfsuppd.2 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
3 finnzfsuppd.1 . . . . . . . . . . 11 (𝜑𝐹𝑉)
43, 2fndmexd 7900 . . . . . . . . . 10 (𝜑𝐷 ∈ V)
5 finnzfsuppd.3 . . . . . . . . . 10 (𝜑𝑍𝑈)
6 elsuppfn 8169 . . . . . . . . . 10 ((𝐹 Fn 𝐷𝐷 ∈ V ∧ 𝑍𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
72, 4, 5, 6syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
87biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍))
98simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐷)
10 finnzfsuppd.5 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
119, 10syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
128simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹𝑥) ≠ 𝑍)
1312neneqd 2937 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) = 𝑍)
1411, 13olcnd 877 . . . . 5 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐴)
1514ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥𝐴))
1615ssrdv 3964 . . 3 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴)
171, 16ssfid 9273 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 fnfun 6638 . . . 4 (𝐹 Fn 𝐷 → Fun 𝐹)
192, 18syl 17 . . 3 (𝜑 → Fun 𝐹)
20 funisfsupp 9379 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2119, 3, 5, 20syl3anc 1373 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2217, 21mpbird 257 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459   class class class wbr 5119  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-supp 8160  df-1o 8480  df-en 8960  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  gsumfs2d  33049  mnringmulrcld  44252
  Copyright terms: Public domain W3C validator