Mathbox for Rohan Ridenour < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finnzfsuppd Structured version   Visualization version   GIF version

Theorem finnzfsuppd 40835
 Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
finnzfsuppd.1 (𝜑𝐹𝑉)
finnzfsuppd.2 (𝜑𝐹 Fn 𝐷)
finnzfsuppd.3 (𝜑𝑍𝑈)
finnzfsuppd.4 (𝜑𝐴 ∈ Fin)
finnzfsuppd.5 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
finnzfsuppd (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝑈(𝑥)   𝑉(𝑥)

Proof of Theorem finnzfsuppd
StepHypRef Expression
1 finnzfsuppd.4 . . 3 (𝜑𝐴 ∈ Fin)
2 finnzfsuppd.2 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
3 finnzfsuppd.1 . . . . . . . . . . 11 (𝜑𝐹𝑉)
43, 2fndmexd 40834 . . . . . . . . . 10 (𝜑𝐷 ∈ V)
5 finnzfsuppd.3 . . . . . . . . . 10 (𝜑𝑍𝑈)
6 elsuppfn 7834 . . . . . . . . . 10 ((𝐹 Fn 𝐷𝐷 ∈ V ∧ 𝑍𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
72, 4, 5, 6syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍)))
87biimpa 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐷 ∧ (𝐹𝑥) ≠ 𝑍))
98simpld 498 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐷)
10 finnzfsuppd.5 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
119, 10syldan 594 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))
128simprd 499 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹𝑥) ≠ 𝑍)
1312neneqd 3019 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) = 𝑍)
1411, 13olcnd 874 . . . . 5 ((𝜑𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥𝐴)
1514ex 416 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥𝐴))
1615ssrdv 3959 . . 3 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴)
171, 16ssfid 8738 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 fnfun 6441 . . . 4 (𝐹 Fn 𝐷 → Fun 𝐹)
192, 18syl 17 . . 3 (𝜑 → Fun 𝐹)
20 funisfsupp 8835 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2119, 3, 5, 20syl3anc 1368 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
2217, 21mpbird 260 1 (𝜑𝐹 finSupp 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  Vcvv 3480   class class class wbr 5052  Fun wfun 6337   Fn wfn 6338  ‘cfv 6343  (class class class)co 7149   supp csupp 7826  Fincfn 8505   finSupp cfsupp 8830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-supp 7827  df-er 8285  df-en 8506  df-fin 8509  df-fsupp 8831 This theorem is referenced by:  mnringmulrcld  40856
 Copyright terms: Public domain W3C validator