![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finnzfsuppd | Structured version Visualization version GIF version |
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
finnzfsuppd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
finnzfsuppd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
finnzfsuppd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
finnzfsuppd.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
finnzfsuppd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
Ref | Expression |
---|---|
finnzfsuppd | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finnzfsuppd.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | finnzfsuppd.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
3 | finnzfsuppd.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3, 2 | fndmexd 7944 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ∈ V) |
5 | finnzfsuppd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
6 | elsuppfn 8211 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
7 | 2, 4, 5, 6 | syl3anc 1371 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 7 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐷 ∧ (𝐹‘𝑥) ≠ 𝑍)) |
9 | 8 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐷) |
10 | finnzfsuppd.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) | |
11 | 9, 10 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) |
12 | 8 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → (𝐹‘𝑥) ≠ 𝑍) |
13 | 12 | neneqd 2951 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹‘𝑥) = 𝑍) |
14 | 11, 13 | olcnd 876 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) |
15 | 14 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) → 𝑥 ∈ 𝐴)) |
16 | 15 | ssrdv 4014 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝐴) |
17 | 1, 16 | ssfid 9329 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
18 | fnfun 6679 | . . . 4 ⊢ (𝐹 Fn 𝐷 → Fun 𝐹) | |
19 | 2, 18 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
20 | funisfsupp 9437 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
21 | 19, 3, 5, 20 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
22 | 17, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 class class class wbr 5166 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-supp 8202 df-1o 8522 df-en 9004 df-fin 9007 df-fsupp 9432 |
This theorem is referenced by: mnringmulrcld 44197 |
Copyright terms: Public domain | W3C validator |