Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem23 Structured version   Visualization version   GIF version

Theorem lcmineqlem23 42027
Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem23.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem23.2 (𝜑 → 9 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem23 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))

Proof of Theorem lcmineqlem23
StepHypRef Expression
1 lcmineqlem23.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 2nn 12321 . . . . . . . . . . . . 13 2 ∈ ℕ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 2 ∈ ℕ))
5 nndivdvds 16282 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
76biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
87nnzd 12623 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℤ)
9 1zzd 12631 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℤ)
108, 9zsubcld 12710 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℤ)
11 0red 11246 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 ∈ ℝ)
12 4re 12332 . . . . . . . . 9 4 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ∈ ℝ)
147nnred 12263 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℝ)
15 1red 11244 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℝ)
1614, 15resubcld 11673 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℝ)
17 4pos 12355 . . . . . . . . 9 0 < 4
1817a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < 4)
19 5m1e4 12378 . . . . . . . . 9 (5 − 1) = 4
20 5re 12335 . . . . . . . . . . 11 5 ∈ ℝ
2120a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ∈ ℝ)
222nncni 12258 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 5cn 12336 . . . . . . . . . . . . . 14 5 ∈ ℂ
2422, 23mulcomi 11251 . . . . . . . . . . . . 13 (2 · 5) = (5 · 2)
25 5t2e10 12816 . . . . . . . . . . . . 13 (5 · 2) = 10
2624, 25eqtri 2757 . . . . . . . . . . . 12 (2 · 5) = 10
27 10re 12735 . . . . . . . . . . . . . 14 10 ∈ ℝ
2827recni 11257 . . . . . . . . . . . . 13 10 ∈ ℂ
292nnne0i 12288 . . . . . . . . . . . . 13 2 ≠ 0
3028, 22, 23, 29divmuli 12003 . . . . . . . . . . . 12 ((10 / 2) = 5 ↔ (2 · 5) = 10)
3126, 30mpbir 231 . . . . . . . . . . 11 (10 / 2) = 5
3227a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ∈ ℝ)
331nnred 12263 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 𝑁 ∈ ℝ)
35 2rp 13021 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 2 ∈ ℝ+)
37 9p1e10 12718 . . . . . . . . . . . . 13 (9 + 1) = 10
38 lcmineqlem23.2 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝑁)
39 9re 12347 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
4140, 33leloed 11386 . . . . . . . . . . . . . . . . 17 (𝜑 → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
4238, 41mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (9 < 𝑁 ∨ 9 = 𝑁))
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ∨ 9 = 𝑁))
44 4cn 12333 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
4522, 44mulcomi 11251 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 4) = (4 · 2)
46 4t2e8 12416 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 · 2) = 8
4745, 46eqtri 2757 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 4) = 8
48 8re 12344 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
4948recni 11257 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℂ
5049, 22, 44, 29divmuli 12003 . . . . . . . . . . . . . . . . . . . . . . 23 ((8 / 2) = 4 ↔ (2 · 4) = 8)
5147, 50mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 (8 / 2) = 4
52 4nn 12331 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ
5351, 52eqeltri 2829 . . . . . . . . . . . . . . . . . . . . 21 (8 / 2) ∈ ℕ
54 8nn 12343 . . . . . . . . . . . . . . . . . . . . . 22 8 ∈ ℕ
55 nndivdvds 16282 . . . . . . . . . . . . . . . . . . . . . 22 ((8 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 8 ↔ (8 / 2) ∈ ℕ))
5654, 2, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (2 ∥ 8 ↔ (8 / 2) ∈ ℕ)
5753, 56mpbir 231 . . . . . . . . . . . . . . . . . . . 20 2 ∥ 8
58 9m1e8 12382 . . . . . . . . . . . . . . . . . . . 20 (9 − 1) = 8
5957, 58breqtrri 5150 . . . . . . . . . . . . . . . . . . 19 2 ∥ (9 − 1)
60 9nn 12346 . . . . . . . . . . . . . . . . . . . . 21 9 ∈ ℕ
6160nnzi 12624 . . . . . . . . . . . . . . . . . . . 20 9 ∈ ℤ
62 oddm1even 16363 . . . . . . . . . . . . . . . . . . . 20 (9 ∈ ℤ → (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1)))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1))
6459, 63mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 9
65 breq2 5127 . . . . . . . . . . . . . . . . . 18 (9 = 𝑁 → (2 ∥ 9 ↔ 2 ∥ 𝑁))
6664, 65mtbii 326 . . . . . . . . . . . . . . . . 17 (9 = 𝑁 → ¬ 2 ∥ 𝑁)
6766con2i 139 . . . . . . . . . . . . . . . 16 (2 ∥ 𝑁 → ¬ 9 = 𝑁)
6867adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → ¬ 9 = 𝑁)
6943, 68olcnd 877 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → 9 < 𝑁)
701nnzd 12623 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
71 zltp1le 12650 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7261, 71mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7370, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7569, 74mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ 2 ∥ 𝑁) → (9 + 1) ≤ 𝑁)
7637, 75eqbrtrrid 5159 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ≤ 𝑁)
7732, 34, 36, 76lediv1dd 13117 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝑁) → (10 / 2) ≤ (𝑁 / 2))
7831, 77eqbrtrrid 5159 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ≤ (𝑁 / 2))
7921, 14, 15, 78lesub1dd 11861 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (5 − 1) ≤ ((𝑁 / 2) − 1))
8019, 79eqbrtrrid 5159 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ≤ ((𝑁 / 2) − 1))
8111, 13, 16, 18, 80ltletrd 11403 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < ((𝑁 / 2) − 1))
8210, 81jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
83 elnnz 12606 . . . . . 6 (((𝑁 / 2) − 1) ∈ ℕ ↔ (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
8482, 83sylibr 234 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℕ)
8584, 80lcmineqlem22 42026 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 1))) ∧ (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2)))))
8685simprd 495 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))))
873nncnd 12264 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
881nncnd 12264 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8988halfcld 12494 . . . . . . . . . 10 (𝜑 → (𝑁 / 2) ∈ ℂ)
9087, 89muls1d 11705 . . . . . . . . 9 (𝜑 → (2 · ((𝑁 / 2) − 1)) = ((2 · (𝑁 / 2)) − 2))
9190oveq1d 7428 . . . . . . . 8 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (((2 · (𝑁 / 2)) − 2) + 2))
9287, 89mulcld 11263 . . . . . . . . 9 (𝜑 → (2 · (𝑁 / 2)) ∈ ℂ)
9392, 87npcand 11606 . . . . . . . 8 (𝜑 → (((2 · (𝑁 / 2)) − 2) + 2) = (2 · (𝑁 / 2)))
9491, 93eqtrd 2769 . . . . . . 7 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (2 · (𝑁 / 2)))
953nnne0d 12298 . . . . . . . 8 (𝜑 → 2 ≠ 0)
9688, 87, 95divcan2d 12027 . . . . . . 7 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
9794, 96eqtrd 2769 . . . . . 6 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = 𝑁)
9897oveq2d 7429 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) = (2↑𝑁))
9997oveq2d 7429 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 / 2) − 1)) + 2)) = (1...𝑁))
10099fveq2d 6890 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) = (lcm‘(1...𝑁)))
10198, 100breq12d 5136 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
102101adantr 480 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
10386, 102mpbid 232 . 2 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
104 oddm1even 16363 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
10570, 104syl 17 . . . . . . 7 (𝜑 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
106105biimpa 476 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
1072a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∈ ℕ)
108 1zzd 12631 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
10970, 108zsubcld 12710 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℤ)
110 0red 11246 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
11148a1i 11 . . . . . . . . . . 11 (𝜑 → 8 ∈ ℝ)
112 1red 11244 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
11333, 112resubcld 11673 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℝ)
114 8pos 12360 . . . . . . . . . . . 12 0 < 8
115114a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 8)
11640, 33, 112, 38lesub1dd 11861 . . . . . . . . . . . 12 (𝜑 → (9 − 1) ≤ (𝑁 − 1))
11758, 116eqbrtrrid 5159 . . . . . . . . . . 11 (𝜑 → 8 ≤ (𝑁 − 1))
118110, 111, 113, 115, 117ltletrd 11403 . . . . . . . . . 10 (𝜑 → 0 < (𝑁 − 1))
119109, 118jca 511 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
120 elnnz 12606 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
121119, 120sylibr 234 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
122121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (𝑁 − 1) ∈ ℕ)
123107, 122nndivdvdsd 41975 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℕ))
124106, 123mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
12544, 22mulcomi 11251 . . . . . . . . 9 (4 · 2) = (2 · 4)
126125, 46eqtr3i 2759 . . . . . . . 8 (2 · 4) = 8
127126, 50mpbir 231 . . . . . . 7 (8 / 2) = 4
1283nnrpd 13057 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
129111, 113, 128, 117lediv1dd 13117 . . . . . . 7 (𝜑 → (8 / 2) ≤ ((𝑁 − 1) / 2))
130127, 129eqbrtrrid 5159 . . . . . 6 (𝜑 → 4 ≤ ((𝑁 − 1) / 2))
131130adantr 480 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 4 ≤ ((𝑁 − 1) / 2))
132124, 131lcmineqlem22 42026 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ∧ (2↑((2 · ((𝑁 − 1) / 2)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 2)))))
133132simpld 494 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))))
134 1cnd 11238 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13588, 134subcld 11602 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
136135, 87, 95divcan2d 12027 . . . . . . . 8 (𝜑 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
137136oveq1d 7428 . . . . . . 7 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
13888, 134npcand 11606 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
139137, 138eqtrd 2769 . . . . . 6 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
140139oveq2d 7429 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) = (2↑𝑁))
141139oveq2d 7429 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 − 1) / 2)) + 1)) = (1...𝑁))
142141fveq2d 6890 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) = (lcm‘(1...𝑁)))
143140, 142breq12d 5136 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
144143adantr 480 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
145133, 144mpbid 232 . 2 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
146103, 145pm2.61dan 812 1 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  4c4 12305  5c5 12306  8c8 12309  9c9 12310  cz 12596  cdc 12716  +crp 13016  ...cfz 13529  cexp 14084  cdvds 16273  lcmclcmf 16609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14296  df-bc 14325  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-prod 15923  df-dvds 16274  df-gcd 16515  df-lcm 16610  df-lcmf 16611  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-cmp 23342  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-ovol 25436  df-vol 25437  df-mbf 25591  df-itg1 25592  df-itg2 25593  df-ibl 25594  df-itg 25595  df-0p 25642  df-limc 25838  df-dv 25839
This theorem is referenced by:  lcmineqlem  42028
  Copyright terms: Public domain W3C validator