Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem23 Structured version   Visualization version   GIF version

Theorem lcmineqlem23 42046
Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem23.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem23.2 (𝜑 → 9 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem23 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))

Proof of Theorem lcmineqlem23
StepHypRef Expression
1 lcmineqlem23.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 2nn 12266 . . . . . . . . . . . . 13 2 ∈ ℕ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 2 ∈ ℕ))
5 nndivdvds 16238 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
76biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
87nnzd 12563 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℤ)
9 1zzd 12571 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℤ)
108, 9zsubcld 12650 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℤ)
11 0red 11184 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 ∈ ℝ)
12 4re 12277 . . . . . . . . 9 4 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ∈ ℝ)
147nnred 12208 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℝ)
15 1red 11182 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℝ)
1614, 15resubcld 11613 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℝ)
17 4pos 12300 . . . . . . . . 9 0 < 4
1817a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < 4)
19 5m1e4 12318 . . . . . . . . 9 (5 − 1) = 4
20 5re 12280 . . . . . . . . . . 11 5 ∈ ℝ
2120a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ∈ ℝ)
222nncni 12203 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 5cn 12281 . . . . . . . . . . . . . 14 5 ∈ ℂ
2422, 23mulcomi 11189 . . . . . . . . . . . . 13 (2 · 5) = (5 · 2)
25 5t2e10 12756 . . . . . . . . . . . . 13 (5 · 2) = 10
2624, 25eqtri 2753 . . . . . . . . . . . 12 (2 · 5) = 10
27 10re 12675 . . . . . . . . . . . . . 14 10 ∈ ℝ
2827recni 11195 . . . . . . . . . . . . 13 10 ∈ ℂ
292nnne0i 12233 . . . . . . . . . . . . 13 2 ≠ 0
3028, 22, 23, 29divmuli 11943 . . . . . . . . . . . 12 ((10 / 2) = 5 ↔ (2 · 5) = 10)
3126, 30mpbir 231 . . . . . . . . . . 11 (10 / 2) = 5
3227a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ∈ ℝ)
331nnred 12208 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 𝑁 ∈ ℝ)
35 2rp 12963 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 2 ∈ ℝ+)
37 9p1e10 12658 . . . . . . . . . . . . 13 (9 + 1) = 10
38 lcmineqlem23.2 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝑁)
39 9re 12292 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
4140, 33leloed 11324 . . . . . . . . . . . . . . . . 17 (𝜑 → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
4238, 41mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (9 < 𝑁 ∨ 9 = 𝑁))
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ∨ 9 = 𝑁))
44 4cn 12278 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
4522, 44mulcomi 11189 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 4) = (4 · 2)
46 4t2e8 12356 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 · 2) = 8
4745, 46eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 4) = 8
48 8re 12289 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
4948recni 11195 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℂ
5049, 22, 44, 29divmuli 11943 . . . . . . . . . . . . . . . . . . . . . . 23 ((8 / 2) = 4 ↔ (2 · 4) = 8)
5147, 50mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 (8 / 2) = 4
52 4nn 12276 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ
5351, 52eqeltri 2825 . . . . . . . . . . . . . . . . . . . . 21 (8 / 2) ∈ ℕ
54 8nn 12288 . . . . . . . . . . . . . . . . . . . . . 22 8 ∈ ℕ
55 nndivdvds 16238 . . . . . . . . . . . . . . . . . . . . . 22 ((8 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 8 ↔ (8 / 2) ∈ ℕ))
5654, 2, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (2 ∥ 8 ↔ (8 / 2) ∈ ℕ)
5753, 56mpbir 231 . . . . . . . . . . . . . . . . . . . 20 2 ∥ 8
58 9m1e8 12322 . . . . . . . . . . . . . . . . . . . 20 (9 − 1) = 8
5957, 58breqtrri 5137 . . . . . . . . . . . . . . . . . . 19 2 ∥ (9 − 1)
60 9nn 12291 . . . . . . . . . . . . . . . . . . . . 21 9 ∈ ℕ
6160nnzi 12564 . . . . . . . . . . . . . . . . . . . 20 9 ∈ ℤ
62 oddm1even 16320 . . . . . . . . . . . . . . . . . . . 20 (9 ∈ ℤ → (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1)))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1))
6459, 63mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 9
65 breq2 5114 . . . . . . . . . . . . . . . . . 18 (9 = 𝑁 → (2 ∥ 9 ↔ 2 ∥ 𝑁))
6664, 65mtbii 326 . . . . . . . . . . . . . . . . 17 (9 = 𝑁 → ¬ 2 ∥ 𝑁)
6766con2i 139 . . . . . . . . . . . . . . . 16 (2 ∥ 𝑁 → ¬ 9 = 𝑁)
6867adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → ¬ 9 = 𝑁)
6943, 68olcnd 877 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → 9 < 𝑁)
701nnzd 12563 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
71 zltp1le 12590 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7261, 71mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7370, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7569, 74mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ 2 ∥ 𝑁) → (9 + 1) ≤ 𝑁)
7637, 75eqbrtrrid 5146 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ≤ 𝑁)
7732, 34, 36, 76lediv1dd 13060 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝑁) → (10 / 2) ≤ (𝑁 / 2))
7831, 77eqbrtrrid 5146 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ≤ (𝑁 / 2))
7921, 14, 15, 78lesub1dd 11801 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (5 − 1) ≤ ((𝑁 / 2) − 1))
8019, 79eqbrtrrid 5146 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ≤ ((𝑁 / 2) − 1))
8111, 13, 16, 18, 80ltletrd 11341 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < ((𝑁 / 2) − 1))
8210, 81jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
83 elnnz 12546 . . . . . 6 (((𝑁 / 2) − 1) ∈ ℕ ↔ (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
8482, 83sylibr 234 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℕ)
8584, 80lcmineqlem22 42045 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 1))) ∧ (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2)))))
8685simprd 495 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))))
873nncnd 12209 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
881nncnd 12209 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8988halfcld 12434 . . . . . . . . . 10 (𝜑 → (𝑁 / 2) ∈ ℂ)
9087, 89muls1d 11645 . . . . . . . . 9 (𝜑 → (2 · ((𝑁 / 2) − 1)) = ((2 · (𝑁 / 2)) − 2))
9190oveq1d 7405 . . . . . . . 8 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (((2 · (𝑁 / 2)) − 2) + 2))
9287, 89mulcld 11201 . . . . . . . . 9 (𝜑 → (2 · (𝑁 / 2)) ∈ ℂ)
9392, 87npcand 11544 . . . . . . . 8 (𝜑 → (((2 · (𝑁 / 2)) − 2) + 2) = (2 · (𝑁 / 2)))
9491, 93eqtrd 2765 . . . . . . 7 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (2 · (𝑁 / 2)))
953nnne0d 12243 . . . . . . . 8 (𝜑 → 2 ≠ 0)
9688, 87, 95divcan2d 11967 . . . . . . 7 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
9794, 96eqtrd 2765 . . . . . 6 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = 𝑁)
9897oveq2d 7406 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) = (2↑𝑁))
9997oveq2d 7406 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 / 2) − 1)) + 2)) = (1...𝑁))
10099fveq2d 6865 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) = (lcm‘(1...𝑁)))
10198, 100breq12d 5123 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
102101adantr 480 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
10386, 102mpbid 232 . 2 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
104 oddm1even 16320 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
10570, 104syl 17 . . . . . . 7 (𝜑 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
106105biimpa 476 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
1072a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∈ ℕ)
108 1zzd 12571 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
10970, 108zsubcld 12650 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℤ)
110 0red 11184 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
11148a1i 11 . . . . . . . . . . 11 (𝜑 → 8 ∈ ℝ)
112 1red 11182 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
11333, 112resubcld 11613 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℝ)
114 8pos 12305 . . . . . . . . . . . 12 0 < 8
115114a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 8)
11640, 33, 112, 38lesub1dd 11801 . . . . . . . . . . . 12 (𝜑 → (9 − 1) ≤ (𝑁 − 1))
11758, 116eqbrtrrid 5146 . . . . . . . . . . 11 (𝜑 → 8 ≤ (𝑁 − 1))
118110, 111, 113, 115, 117ltletrd 11341 . . . . . . . . . 10 (𝜑 → 0 < (𝑁 − 1))
119109, 118jca 511 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
120 elnnz 12546 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
121119, 120sylibr 234 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
122121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (𝑁 − 1) ∈ ℕ)
123107, 122nndivdvdsd 41994 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℕ))
124106, 123mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
12544, 22mulcomi 11189 . . . . . . . . 9 (4 · 2) = (2 · 4)
126125, 46eqtr3i 2755 . . . . . . . 8 (2 · 4) = 8
127126, 50mpbir 231 . . . . . . 7 (8 / 2) = 4
1283nnrpd 13000 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
129111, 113, 128, 117lediv1dd 13060 . . . . . . 7 (𝜑 → (8 / 2) ≤ ((𝑁 − 1) / 2))
130127, 129eqbrtrrid 5146 . . . . . 6 (𝜑 → 4 ≤ ((𝑁 − 1) / 2))
131130adantr 480 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 4 ≤ ((𝑁 − 1) / 2))
132124, 131lcmineqlem22 42045 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ∧ (2↑((2 · ((𝑁 − 1) / 2)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 2)))))
133132simpld 494 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))))
134 1cnd 11176 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13588, 134subcld 11540 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
136135, 87, 95divcan2d 11967 . . . . . . . 8 (𝜑 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
137136oveq1d 7405 . . . . . . 7 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
13888, 134npcand 11544 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
139137, 138eqtrd 2765 . . . . . 6 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
140139oveq2d 7406 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) = (2↑𝑁))
141139oveq2d 7406 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 − 1) / 2)) + 1)) = (1...𝑁))
142141fveq2d 6865 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) = (lcm‘(1...𝑁)))
143140, 142breq12d 5123 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
144143adantr 480 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
145133, 144mpbid 232 . 2 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
146103, 145pm2.61dan 812 1 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  5c5 12251  8c8 12254  9c9 12255  cz 12536  cdc 12656  +crp 12958  ...cfz 13475  cexp 14033  cdvds 16229  lcmclcmf 16566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-dvds 16230  df-gcd 16472  df-lcm 16567  df-lcmf 16568  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  lcmineqlem  42047
  Copyright terms: Public domain W3C validator