Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem23 Structured version   Visualization version   GIF version

Theorem lcmineqlem23 42039
Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem23.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem23.2 (𝜑 → 9 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem23 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))

Proof of Theorem lcmineqlem23
StepHypRef Expression
1 lcmineqlem23.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 2nn 12259 . . . . . . . . . . . . 13 2 ∈ ℕ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 2 ∈ ℕ))
5 nndivdvds 16231 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
76biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
87nnzd 12556 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℤ)
9 1zzd 12564 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℤ)
108, 9zsubcld 12643 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℤ)
11 0red 11177 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 ∈ ℝ)
12 4re 12270 . . . . . . . . 9 4 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ∈ ℝ)
147nnred 12201 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℝ)
15 1red 11175 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℝ)
1614, 15resubcld 11606 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℝ)
17 4pos 12293 . . . . . . . . 9 0 < 4
1817a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < 4)
19 5m1e4 12311 . . . . . . . . 9 (5 − 1) = 4
20 5re 12273 . . . . . . . . . . 11 5 ∈ ℝ
2120a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ∈ ℝ)
222nncni 12196 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 5cn 12274 . . . . . . . . . . . . . 14 5 ∈ ℂ
2422, 23mulcomi 11182 . . . . . . . . . . . . 13 (2 · 5) = (5 · 2)
25 5t2e10 12749 . . . . . . . . . . . . 13 (5 · 2) = 10
2624, 25eqtri 2752 . . . . . . . . . . . 12 (2 · 5) = 10
27 10re 12668 . . . . . . . . . . . . . 14 10 ∈ ℝ
2827recni 11188 . . . . . . . . . . . . 13 10 ∈ ℂ
292nnne0i 12226 . . . . . . . . . . . . 13 2 ≠ 0
3028, 22, 23, 29divmuli 11936 . . . . . . . . . . . 12 ((10 / 2) = 5 ↔ (2 · 5) = 10)
3126, 30mpbir 231 . . . . . . . . . . 11 (10 / 2) = 5
3227a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ∈ ℝ)
331nnred 12201 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 𝑁 ∈ ℝ)
35 2rp 12956 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 2 ∈ ℝ+)
37 9p1e10 12651 . . . . . . . . . . . . 13 (9 + 1) = 10
38 lcmineqlem23.2 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝑁)
39 9re 12285 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
4140, 33leloed 11317 . . . . . . . . . . . . . . . . 17 (𝜑 → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
4238, 41mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (9 < 𝑁 ∨ 9 = 𝑁))
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ∨ 9 = 𝑁))
44 4cn 12271 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
4522, 44mulcomi 11182 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 4) = (4 · 2)
46 4t2e8 12349 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 · 2) = 8
4745, 46eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 4) = 8
48 8re 12282 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
4948recni 11188 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℂ
5049, 22, 44, 29divmuli 11936 . . . . . . . . . . . . . . . . . . . . . . 23 ((8 / 2) = 4 ↔ (2 · 4) = 8)
5147, 50mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 (8 / 2) = 4
52 4nn 12269 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ
5351, 52eqeltri 2824 . . . . . . . . . . . . . . . . . . . . 21 (8 / 2) ∈ ℕ
54 8nn 12281 . . . . . . . . . . . . . . . . . . . . . 22 8 ∈ ℕ
55 nndivdvds 16231 . . . . . . . . . . . . . . . . . . . . . 22 ((8 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 8 ↔ (8 / 2) ∈ ℕ))
5654, 2, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (2 ∥ 8 ↔ (8 / 2) ∈ ℕ)
5753, 56mpbir 231 . . . . . . . . . . . . . . . . . . . 20 2 ∥ 8
58 9m1e8 12315 . . . . . . . . . . . . . . . . . . . 20 (9 − 1) = 8
5957, 58breqtrri 5134 . . . . . . . . . . . . . . . . . . 19 2 ∥ (9 − 1)
60 9nn 12284 . . . . . . . . . . . . . . . . . . . . 21 9 ∈ ℕ
6160nnzi 12557 . . . . . . . . . . . . . . . . . . . 20 9 ∈ ℤ
62 oddm1even 16313 . . . . . . . . . . . . . . . . . . . 20 (9 ∈ ℤ → (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1)))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1))
6459, 63mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 9
65 breq2 5111 . . . . . . . . . . . . . . . . . 18 (9 = 𝑁 → (2 ∥ 9 ↔ 2 ∥ 𝑁))
6664, 65mtbii 326 . . . . . . . . . . . . . . . . 17 (9 = 𝑁 → ¬ 2 ∥ 𝑁)
6766con2i 139 . . . . . . . . . . . . . . . 16 (2 ∥ 𝑁 → ¬ 9 = 𝑁)
6867adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → ¬ 9 = 𝑁)
6943, 68olcnd 877 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → 9 < 𝑁)
701nnzd 12556 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
71 zltp1le 12583 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7261, 71mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7370, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7569, 74mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ 2 ∥ 𝑁) → (9 + 1) ≤ 𝑁)
7637, 75eqbrtrrid 5143 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ≤ 𝑁)
7732, 34, 36, 76lediv1dd 13053 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝑁) → (10 / 2) ≤ (𝑁 / 2))
7831, 77eqbrtrrid 5143 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ≤ (𝑁 / 2))
7921, 14, 15, 78lesub1dd 11794 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (5 − 1) ≤ ((𝑁 / 2) − 1))
8019, 79eqbrtrrid 5143 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ≤ ((𝑁 / 2) − 1))
8111, 13, 16, 18, 80ltletrd 11334 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < ((𝑁 / 2) − 1))
8210, 81jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
83 elnnz 12539 . . . . . 6 (((𝑁 / 2) − 1) ∈ ℕ ↔ (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
8482, 83sylibr 234 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℕ)
8584, 80lcmineqlem22 42038 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 1))) ∧ (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2)))))
8685simprd 495 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))))
873nncnd 12202 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
881nncnd 12202 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8988halfcld 12427 . . . . . . . . . 10 (𝜑 → (𝑁 / 2) ∈ ℂ)
9087, 89muls1d 11638 . . . . . . . . 9 (𝜑 → (2 · ((𝑁 / 2) − 1)) = ((2 · (𝑁 / 2)) − 2))
9190oveq1d 7402 . . . . . . . 8 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (((2 · (𝑁 / 2)) − 2) + 2))
9287, 89mulcld 11194 . . . . . . . . 9 (𝜑 → (2 · (𝑁 / 2)) ∈ ℂ)
9392, 87npcand 11537 . . . . . . . 8 (𝜑 → (((2 · (𝑁 / 2)) − 2) + 2) = (2 · (𝑁 / 2)))
9491, 93eqtrd 2764 . . . . . . 7 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (2 · (𝑁 / 2)))
953nnne0d 12236 . . . . . . . 8 (𝜑 → 2 ≠ 0)
9688, 87, 95divcan2d 11960 . . . . . . 7 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
9794, 96eqtrd 2764 . . . . . 6 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = 𝑁)
9897oveq2d 7403 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) = (2↑𝑁))
9997oveq2d 7403 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 / 2) − 1)) + 2)) = (1...𝑁))
10099fveq2d 6862 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) = (lcm‘(1...𝑁)))
10198, 100breq12d 5120 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
102101adantr 480 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
10386, 102mpbid 232 . 2 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
104 oddm1even 16313 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
10570, 104syl 17 . . . . . . 7 (𝜑 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
106105biimpa 476 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
1072a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∈ ℕ)
108 1zzd 12564 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
10970, 108zsubcld 12643 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℤ)
110 0red 11177 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
11148a1i 11 . . . . . . . . . . 11 (𝜑 → 8 ∈ ℝ)
112 1red 11175 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
11333, 112resubcld 11606 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℝ)
114 8pos 12298 . . . . . . . . . . . 12 0 < 8
115114a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 8)
11640, 33, 112, 38lesub1dd 11794 . . . . . . . . . . . 12 (𝜑 → (9 − 1) ≤ (𝑁 − 1))
11758, 116eqbrtrrid 5143 . . . . . . . . . . 11 (𝜑 → 8 ≤ (𝑁 − 1))
118110, 111, 113, 115, 117ltletrd 11334 . . . . . . . . . 10 (𝜑 → 0 < (𝑁 − 1))
119109, 118jca 511 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
120 elnnz 12539 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
121119, 120sylibr 234 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
122121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (𝑁 − 1) ∈ ℕ)
123107, 122nndivdvdsd 41987 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℕ))
124106, 123mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
12544, 22mulcomi 11182 . . . . . . . . 9 (4 · 2) = (2 · 4)
126125, 46eqtr3i 2754 . . . . . . . 8 (2 · 4) = 8
127126, 50mpbir 231 . . . . . . 7 (8 / 2) = 4
1283nnrpd 12993 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
129111, 113, 128, 117lediv1dd 13053 . . . . . . 7 (𝜑 → (8 / 2) ≤ ((𝑁 − 1) / 2))
130127, 129eqbrtrrid 5143 . . . . . 6 (𝜑 → 4 ≤ ((𝑁 − 1) / 2))
131130adantr 480 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 4 ≤ ((𝑁 − 1) / 2))
132124, 131lcmineqlem22 42038 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ∧ (2↑((2 · ((𝑁 − 1) / 2)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 2)))))
133132simpld 494 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))))
134 1cnd 11169 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13588, 134subcld 11533 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
136135, 87, 95divcan2d 11960 . . . . . . . 8 (𝜑 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
137136oveq1d 7402 . . . . . . 7 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
13888, 134npcand 11537 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
139137, 138eqtrd 2764 . . . . . 6 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
140139oveq2d 7403 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) = (2↑𝑁))
141139oveq2d 7403 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 − 1) / 2)) + 1)) = (1...𝑁))
142141fveq2d 6862 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) = (lcm‘(1...𝑁)))
143140, 142breq12d 5120 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
144143adantr 480 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
145133, 144mpbid 232 . 2 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
146103, 145pm2.61dan 812 1 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  5c5 12244  8c8 12247  9c9 12248  cz 12529  cdc 12649  +crp 12951  ...cfz 13468  cexp 14026  cdvds 16222  lcmclcmf 16559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-dvds 16223  df-gcd 16465  df-lcm 16560  df-lcmf 16561  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  lcmineqlem  42040
  Copyright terms: Public domain W3C validator