Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem23 Structured version   Visualization version   GIF version

Theorem lcmineqlem23 40059
Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem23.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem23.2 (𝜑 → 9 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem23 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))

Proof of Theorem lcmineqlem23
StepHypRef Expression
1 lcmineqlem23.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 2nn 12046 . . . . . . . . . . . . 13 2 ∈ ℕ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
41, 3jca 512 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 2 ∈ ℕ))
5 nndivdvds 15972 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
76biimpa 477 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
87nnzd 12425 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℤ)
9 1zzd 12351 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℤ)
108, 9zsubcld 12431 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℤ)
11 0red 10978 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 ∈ ℝ)
12 4re 12057 . . . . . . . . 9 4 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ∈ ℝ)
147nnred 11988 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℝ)
15 1red 10976 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℝ)
1614, 15resubcld 11403 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℝ)
17 4pos 12080 . . . . . . . . 9 0 < 4
1817a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < 4)
19 5m1e4 12103 . . . . . . . . 9 (5 − 1) = 4
20 5re 12060 . . . . . . . . . . 11 5 ∈ ℝ
2120a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ∈ ℝ)
222nncni 11983 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 5cn 12061 . . . . . . . . . . . . . 14 5 ∈ ℂ
2422, 23mulcomi 10983 . . . . . . . . . . . . 13 (2 · 5) = (5 · 2)
25 5t2e10 12537 . . . . . . . . . . . . 13 (5 · 2) = 10
2624, 25eqtri 2766 . . . . . . . . . . . 12 (2 · 5) = 10
27 10re 12456 . . . . . . . . . . . . . 14 10 ∈ ℝ
2827recni 10989 . . . . . . . . . . . . 13 10 ∈ ℂ
292nnne0i 12013 . . . . . . . . . . . . 13 2 ≠ 0
3028, 22, 23, 29divmuli 11729 . . . . . . . . . . . 12 ((10 / 2) = 5 ↔ (2 · 5) = 10)
3126, 30mpbir 230 . . . . . . . . . . 11 (10 / 2) = 5
3227a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ∈ ℝ)
331nnred 11988 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3433adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 𝑁 ∈ ℝ)
35 2rp 12735 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 2 ∈ ℝ+)
37 9p1e10 12439 . . . . . . . . . . . . 13 (9 + 1) = 10
38 lcmineqlem23.2 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝑁)
39 9re 12072 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
4140, 33leloed 11118 . . . . . . . . . . . . . . . . 17 (𝜑 → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
4238, 41mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (9 < 𝑁 ∨ 9 = 𝑁))
4342adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ∨ 9 = 𝑁))
44 4cn 12058 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
4522, 44mulcomi 10983 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 4) = (4 · 2)
46 4t2e8 12141 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 · 2) = 8
4745, 46eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 4) = 8
48 8re 12069 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
4948recni 10989 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℂ
5049, 22, 44, 29divmuli 11729 . . . . . . . . . . . . . . . . . . . . . . 23 ((8 / 2) = 4 ↔ (2 · 4) = 8)
5147, 50mpbir 230 . . . . . . . . . . . . . . . . . . . . . 22 (8 / 2) = 4
52 4nn 12056 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ
5351, 52eqeltri 2835 . . . . . . . . . . . . . . . . . . . . 21 (8 / 2) ∈ ℕ
54 8nn 12068 . . . . . . . . . . . . . . . . . . . . . 22 8 ∈ ℕ
55 nndivdvds 15972 . . . . . . . . . . . . . . . . . . . . . 22 ((8 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 8 ↔ (8 / 2) ∈ ℕ))
5654, 2, 55mp2an 689 . . . . . . . . . . . . . . . . . . . . 21 (2 ∥ 8 ↔ (8 / 2) ∈ ℕ)
5753, 56mpbir 230 . . . . . . . . . . . . . . . . . . . 20 2 ∥ 8
58 9m1e8 12107 . . . . . . . . . . . . . . . . . . . 20 (9 − 1) = 8
5957, 58breqtrri 5101 . . . . . . . . . . . . . . . . . . 19 2 ∥ (9 − 1)
60 9nn 12071 . . . . . . . . . . . . . . . . . . . . 21 9 ∈ ℕ
6160nnzi 12344 . . . . . . . . . . . . . . . . . . . 20 9 ∈ ℤ
62 oddm1even 16052 . . . . . . . . . . . . . . . . . . . 20 (9 ∈ ℤ → (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1)))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1))
6459, 63mpbir 230 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 9
65 breq2 5078 . . . . . . . . . . . . . . . . . 18 (9 = 𝑁 → (2 ∥ 9 ↔ 2 ∥ 𝑁))
6664, 65mtbii 326 . . . . . . . . . . . . . . . . 17 (9 = 𝑁 → ¬ 2 ∥ 𝑁)
6766con2i 139 . . . . . . . . . . . . . . . 16 (2 ∥ 𝑁 → ¬ 9 = 𝑁)
6867adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → ¬ 9 = 𝑁)
6943, 68olcnd 874 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → 9 < 𝑁)
701nnzd 12425 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
71 zltp1le 12370 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7261, 71mpan 687 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7370, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7473adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7569, 74mpbid 231 . . . . . . . . . . . . 13 ((𝜑 ∧ 2 ∥ 𝑁) → (9 + 1) ≤ 𝑁)
7637, 75eqbrtrrid 5110 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ≤ 𝑁)
7732, 34, 36, 76lediv1dd 12830 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝑁) → (10 / 2) ≤ (𝑁 / 2))
7831, 77eqbrtrrid 5110 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ≤ (𝑁 / 2))
7921, 14, 15, 78lesub1dd 11591 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (5 − 1) ≤ ((𝑁 / 2) − 1))
8019, 79eqbrtrrid 5110 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ≤ ((𝑁 / 2) − 1))
8111, 13, 16, 18, 80ltletrd 11135 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < ((𝑁 / 2) − 1))
8210, 81jca 512 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
83 elnnz 12329 . . . . . 6 (((𝑁 / 2) − 1) ∈ ℕ ↔ (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
8482, 83sylibr 233 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℕ)
8584, 80lcmineqlem22 40058 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 1))) ∧ (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2)))))
8685simprd 496 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))))
873nncnd 11989 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
881nncnd 11989 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8988halfcld 12218 . . . . . . . . . 10 (𝜑 → (𝑁 / 2) ∈ ℂ)
9087, 89muls1d 11435 . . . . . . . . 9 (𝜑 → (2 · ((𝑁 / 2) − 1)) = ((2 · (𝑁 / 2)) − 2))
9190oveq1d 7290 . . . . . . . 8 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (((2 · (𝑁 / 2)) − 2) + 2))
9287, 89mulcld 10995 . . . . . . . . 9 (𝜑 → (2 · (𝑁 / 2)) ∈ ℂ)
9392, 87npcand 11336 . . . . . . . 8 (𝜑 → (((2 · (𝑁 / 2)) − 2) + 2) = (2 · (𝑁 / 2)))
9491, 93eqtrd 2778 . . . . . . 7 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (2 · (𝑁 / 2)))
953nnne0d 12023 . . . . . . . 8 (𝜑 → 2 ≠ 0)
9688, 87, 95divcan2d 11753 . . . . . . 7 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
9794, 96eqtrd 2778 . . . . . 6 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = 𝑁)
9897oveq2d 7291 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) = (2↑𝑁))
9997oveq2d 7291 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 / 2) − 1)) + 2)) = (1...𝑁))
10099fveq2d 6778 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) = (lcm‘(1...𝑁)))
10198, 100breq12d 5087 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
102101adantr 481 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
10386, 102mpbid 231 . 2 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
104 oddm1even 16052 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
10570, 104syl 17 . . . . . . 7 (𝜑 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
106105biimpa 477 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
1072a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∈ ℕ)
108 1zzd 12351 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
10970, 108zsubcld 12431 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℤ)
110 0red 10978 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
11148a1i 11 . . . . . . . . . . 11 (𝜑 → 8 ∈ ℝ)
112 1red 10976 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
11333, 112resubcld 11403 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℝ)
114 8pos 12085 . . . . . . . . . . . 12 0 < 8
115114a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 8)
11640, 33, 112, 38lesub1dd 11591 . . . . . . . . . . . 12 (𝜑 → (9 − 1) ≤ (𝑁 − 1))
11758, 116eqbrtrrid 5110 . . . . . . . . . . 11 (𝜑 → 8 ≤ (𝑁 − 1))
118110, 111, 113, 115, 117ltletrd 11135 . . . . . . . . . 10 (𝜑 → 0 < (𝑁 − 1))
119109, 118jca 512 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
120 elnnz 12329 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
121119, 120sylibr 233 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
122121adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (𝑁 − 1) ∈ ℕ)
123107, 122nndivdvdsd 40008 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℕ))
124106, 123mpbid 231 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
12544, 22mulcomi 10983 . . . . . . . . 9 (4 · 2) = (2 · 4)
126125, 46eqtr3i 2768 . . . . . . . 8 (2 · 4) = 8
127126, 50mpbir 230 . . . . . . 7 (8 / 2) = 4
1283nnrpd 12770 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
129111, 113, 128, 117lediv1dd 12830 . . . . . . 7 (𝜑 → (8 / 2) ≤ ((𝑁 − 1) / 2))
130127, 129eqbrtrrid 5110 . . . . . 6 (𝜑 → 4 ≤ ((𝑁 − 1) / 2))
131130adantr 481 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 4 ≤ ((𝑁 − 1) / 2))
132124, 131lcmineqlem22 40058 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ∧ (2↑((2 · ((𝑁 − 1) / 2)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 2)))))
133132simpld 495 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))))
134 1cnd 10970 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13588, 134subcld 11332 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
136135, 87, 95divcan2d 11753 . . . . . . . 8 (𝜑 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
137136oveq1d 7290 . . . . . . 7 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
13888, 134npcand 11336 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
139137, 138eqtrd 2778 . . . . . 6 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
140139oveq2d 7291 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) = (2↑𝑁))
141139oveq2d 7291 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 − 1) / 2)) + 1)) = (1...𝑁))
142141fveq2d 6778 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) = (lcm‘(1...𝑁)))
143140, 142breq12d 5087 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
144143adantr 481 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
145133, 144mpbid 231 . 2 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
146103, 145pm2.61dan 810 1 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  4c4 12030  5c5 12031  8c8 12034  9c9 12035  cz 12319  cdc 12437  +crp 12730  ...cfz 13239  cexp 13782  cdvds 15963  lcmclcmf 16294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-dvds 15964  df-gcd 16202  df-lcm 16295  df-lcmf 16296  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  lcmineqlem  40060
  Copyright terms: Public domain W3C validator