Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem23 Structured version   Visualization version   GIF version

Theorem lcmineqlem23 42052
Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem23.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem23.2 (𝜑 → 9 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem23 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))

Proof of Theorem lcmineqlem23
StepHypRef Expression
1 lcmineqlem23.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 2nn 12339 . . . . . . . . . . . . 13 2 ∈ ℕ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 2 ∈ ℕ))
5 nndivdvds 16299 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℕ))
76biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
87nnzd 12640 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℤ)
9 1zzd 12648 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℤ)
108, 9zsubcld 12727 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℤ)
11 0red 11264 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 ∈ ℝ)
12 4re 12350 . . . . . . . . 9 4 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ∈ ℝ)
147nnred 12281 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℝ)
15 1red 11262 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → 1 ∈ ℝ)
1614, 15resubcld 11691 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℝ)
17 4pos 12373 . . . . . . . . 9 0 < 4
1817a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < 4)
19 5m1e4 12396 . . . . . . . . 9 (5 − 1) = 4
20 5re 12353 . . . . . . . . . . 11 5 ∈ ℝ
2120a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ∈ ℝ)
222nncni 12276 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 5cn 12354 . . . . . . . . . . . . . 14 5 ∈ ℂ
2422, 23mulcomi 11269 . . . . . . . . . . . . 13 (2 · 5) = (5 · 2)
25 5t2e10 12833 . . . . . . . . . . . . 13 (5 · 2) = 10
2624, 25eqtri 2765 . . . . . . . . . . . 12 (2 · 5) = 10
27 10re 12752 . . . . . . . . . . . . . 14 10 ∈ ℝ
2827recni 11275 . . . . . . . . . . . . 13 10 ∈ ℂ
292nnne0i 12306 . . . . . . . . . . . . 13 2 ≠ 0
3028, 22, 23, 29divmuli 12021 . . . . . . . . . . . 12 ((10 / 2) = 5 ↔ (2 · 5) = 10)
3126, 30mpbir 231 . . . . . . . . . . 11 (10 / 2) = 5
3227a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ∈ ℝ)
331nnred 12281 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 𝑁 ∈ ℝ)
35 2rp 13039 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 2 ∈ ℝ+)
37 9p1e10 12735 . . . . . . . . . . . . 13 (9 + 1) = 10
38 lcmineqlem23.2 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝑁)
39 9re 12365 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
4140, 33leloed 11404 . . . . . . . . . . . . . . . . 17 (𝜑 → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
4238, 41mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (9 < 𝑁 ∨ 9 = 𝑁))
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ∨ 9 = 𝑁))
44 4cn 12351 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
4522, 44mulcomi 11269 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 4) = (4 · 2)
46 4t2e8 12434 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 · 2) = 8
4745, 46eqtri 2765 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 4) = 8
48 8re 12362 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
4948recni 11275 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℂ
5049, 22, 44, 29divmuli 12021 . . . . . . . . . . . . . . . . . . . . . . 23 ((8 / 2) = 4 ↔ (2 · 4) = 8)
5147, 50mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 (8 / 2) = 4
52 4nn 12349 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ
5351, 52eqeltri 2837 . . . . . . . . . . . . . . . . . . . . 21 (8 / 2) ∈ ℕ
54 8nn 12361 . . . . . . . . . . . . . . . . . . . . . 22 8 ∈ ℕ
55 nndivdvds 16299 . . . . . . . . . . . . . . . . . . . . . 22 ((8 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 8 ↔ (8 / 2) ∈ ℕ))
5654, 2, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (2 ∥ 8 ↔ (8 / 2) ∈ ℕ)
5753, 56mpbir 231 . . . . . . . . . . . . . . . . . . . 20 2 ∥ 8
58 9m1e8 12400 . . . . . . . . . . . . . . . . . . . 20 (9 − 1) = 8
5957, 58breqtrri 5170 . . . . . . . . . . . . . . . . . . 19 2 ∥ (9 − 1)
60 9nn 12364 . . . . . . . . . . . . . . . . . . . . 21 9 ∈ ℕ
6160nnzi 12641 . . . . . . . . . . . . . . . . . . . 20 9 ∈ ℤ
62 oddm1even 16380 . . . . . . . . . . . . . . . . . . . 20 (9 ∈ ℤ → (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1)))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (¬ 2 ∥ 9 ↔ 2 ∥ (9 − 1))
6459, 63mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 9
65 breq2 5147 . . . . . . . . . . . . . . . . . 18 (9 = 𝑁 → (2 ∥ 9 ↔ 2 ∥ 𝑁))
6664, 65mtbii 326 . . . . . . . . . . . . . . . . 17 (9 = 𝑁 → ¬ 2 ∥ 𝑁)
6766con2i 139 . . . . . . . . . . . . . . . 16 (2 ∥ 𝑁 → ¬ 9 = 𝑁)
6867adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 2 ∥ 𝑁) → ¬ 9 = 𝑁)
6943, 68olcnd 878 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → 9 < 𝑁)
701nnzd 12640 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
71 zltp1le 12667 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7261, 71mpan 690 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7370, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 2 ∥ 𝑁) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
7569, 74mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ 2 ∥ 𝑁) → (9 + 1) ≤ 𝑁)
7637, 75eqbrtrrid 5179 . . . . . . . . . . . 12 ((𝜑 ∧ 2 ∥ 𝑁) → 10 ≤ 𝑁)
7732, 34, 36, 76lediv1dd 13135 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝑁) → (10 / 2) ≤ (𝑁 / 2))
7831, 77eqbrtrrid 5179 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝑁) → 5 ≤ (𝑁 / 2))
7921, 14, 15, 78lesub1dd 11879 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑁) → (5 − 1) ≤ ((𝑁 / 2) − 1))
8019, 79eqbrtrrid 5179 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑁) → 4 ≤ ((𝑁 / 2) − 1))
8111, 13, 16, 18, 80ltletrd 11421 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑁) → 0 < ((𝑁 / 2) − 1))
8210, 81jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
83 elnnz 12623 . . . . . 6 (((𝑁 / 2) − 1) ∈ ℕ ↔ (((𝑁 / 2) − 1) ∈ ℤ ∧ 0 < ((𝑁 / 2) − 1)))
8482, 83sylibr 234 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((𝑁 / 2) − 1) ∈ ℕ)
8584, 80lcmineqlem22 42051 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 1))) ∧ (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2)))))
8685simprd 495 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))))
873nncnd 12282 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
881nncnd 12282 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8988halfcld 12511 . . . . . . . . . 10 (𝜑 → (𝑁 / 2) ∈ ℂ)
9087, 89muls1d 11723 . . . . . . . . 9 (𝜑 → (2 · ((𝑁 / 2) − 1)) = ((2 · (𝑁 / 2)) − 2))
9190oveq1d 7446 . . . . . . . 8 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (((2 · (𝑁 / 2)) − 2) + 2))
9287, 89mulcld 11281 . . . . . . . . 9 (𝜑 → (2 · (𝑁 / 2)) ∈ ℂ)
9392, 87npcand 11624 . . . . . . . 8 (𝜑 → (((2 · (𝑁 / 2)) − 2) + 2) = (2 · (𝑁 / 2)))
9491, 93eqtrd 2777 . . . . . . 7 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = (2 · (𝑁 / 2)))
953nnne0d 12316 . . . . . . . 8 (𝜑 → 2 ≠ 0)
9688, 87, 95divcan2d 12045 . . . . . . 7 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
9794, 96eqtrd 2777 . . . . . 6 (𝜑 → ((2 · ((𝑁 / 2) − 1)) + 2) = 𝑁)
9897oveq2d 7447 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 / 2) − 1)) + 2)) = (2↑𝑁))
9997oveq2d 7447 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 / 2) − 1)) + 2)) = (1...𝑁))
10099fveq2d 6910 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) = (lcm‘(1...𝑁)))
10198, 100breq12d 5156 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
102101adantr 480 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 / 2) − 1)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 / 2) − 1)) + 2))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
10386, 102mpbid 232 . 2 ((𝜑 ∧ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
104 oddm1even 16380 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
10570, 104syl 17 . . . . . . 7 (𝜑 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
106105biimpa 476 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
1072a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 2 ∈ ℕ)
108 1zzd 12648 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
10970, 108zsubcld 12727 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℤ)
110 0red 11264 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
11148a1i 11 . . . . . . . . . . 11 (𝜑 → 8 ∈ ℝ)
112 1red 11262 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
11333, 112resubcld 11691 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℝ)
114 8pos 12378 . . . . . . . . . . . 12 0 < 8
115114a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 8)
11640, 33, 112, 38lesub1dd 11879 . . . . . . . . . . . 12 (𝜑 → (9 − 1) ≤ (𝑁 − 1))
11758, 116eqbrtrrid 5179 . . . . . . . . . . 11 (𝜑 → 8 ≤ (𝑁 − 1))
118110, 111, 113, 115, 117ltletrd 11421 . . . . . . . . . 10 (𝜑 → 0 < (𝑁 − 1))
119109, 118jca 511 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
120 elnnz 12623 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 < (𝑁 − 1)))
121119, 120sylibr 234 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
122121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (𝑁 − 1) ∈ ℕ)
123107, 122nndivdvdsd 42000 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℕ))
124106, 123mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
12544, 22mulcomi 11269 . . . . . . . . 9 (4 · 2) = (2 · 4)
126125, 46eqtr3i 2767 . . . . . . . 8 (2 · 4) = 8
127126, 50mpbir 231 . . . . . . 7 (8 / 2) = 4
1283nnrpd 13075 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
129111, 113, 128, 117lediv1dd 13135 . . . . . . 7 (𝜑 → (8 / 2) ≤ ((𝑁 − 1) / 2))
130127, 129eqbrtrrid 5179 . . . . . 6 (𝜑 → 4 ≤ ((𝑁 − 1) / 2))
131130adantr 480 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → 4 ≤ ((𝑁 − 1) / 2))
132124, 131lcmineqlem22 42051 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ∧ (2↑((2 · ((𝑁 − 1) / 2)) + 2)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 2)))))
133132simpld 494 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))))
134 1cnd 11256 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13588, 134subcld 11620 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
136135, 87, 95divcan2d 12045 . . . . . . . 8 (𝜑 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
137136oveq1d 7446 . . . . . . 7 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
13888, 134npcand 11624 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
139137, 138eqtrd 2777 . . . . . 6 (𝜑 → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
140139oveq2d 7447 . . . . 5 (𝜑 → (2↑((2 · ((𝑁 − 1) / 2)) + 1)) = (2↑𝑁))
141139oveq2d 7447 . . . . . 6 (𝜑 → (1...((2 · ((𝑁 − 1) / 2)) + 1)) = (1...𝑁))
142141fveq2d 6910 . . . . 5 (𝜑 → (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) = (lcm‘(1...𝑁)))
143140, 142breq12d 5156 . . . 4 (𝜑 → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
144143adantr 480 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((2↑((2 · ((𝑁 − 1) / 2)) + 1)) ≤ (lcm‘(1...((2 · ((𝑁 − 1) / 2)) + 1))) ↔ (2↑𝑁) ≤ (lcm‘(1...𝑁))))
145133, 144mpbid 232 . 2 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
146103, 145pm2.61dan 813 1 (𝜑 → (2↑𝑁) ≤ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  5c5 12324  8c8 12327  9c9 12328  cz 12613  cdc 12733  +crp 13034  ...cfz 13547  cexp 14102  cdvds 16290  lcmclcmf 16626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-dvds 16291  df-gcd 16532  df-lcm 16627  df-lcmf 16628  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  lcmineqlem  42053
  Copyright terms: Public domain W3C validator