MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltonold Structured version   Visualization version   GIF version

Theorem sltonold 28198
Description: The class of ordinals less than any surreal is a subset of that surreal's old set. (Contributed by Scott Fenton, 22-Mar-2025.)
Assertion
Ref Expression
sltonold (𝐴 No → {𝑥 ∈ Ons𝑥 <s 𝐴} ⊆ ( O ‘( bday 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sltonold
StepHypRef Expression
1 bdayelon 27715 . . . . . . 7 ( bday 𝑥) ∈ On
21onordi 6419 . . . . . 6 Ord ( bday 𝑥)
3 bdayelon 27715 . . . . . . 7 ( bday 𝐴) ∈ On
43onordi 6419 . . . . . 6 Ord ( bday 𝐴)
5 ordtri2or 6406 . . . . . 6 ((Ord ( bday 𝑥) ∧ Ord ( bday 𝐴)) → (( bday 𝑥) ∈ ( bday 𝐴) ∨ ( bday 𝐴) ⊆ ( bday 𝑥)))
62, 4, 5mp2an 692 . . . . 5 (( bday 𝑥) ∈ ( bday 𝐴) ∨ ( bday 𝐴) ⊆ ( bday 𝑥))
76a1i 11 . . . 4 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → (( bday 𝑥) ∈ ( bday 𝐴) ∨ ( bday 𝐴) ⊆ ( bday 𝑥)))
8 madeun 27829 . . . . . . . . . 10 ( M ‘( bday 𝑥)) = (( O ‘( bday 𝑥)) ∪ ( N ‘( bday 𝑥)))
98eleq2i 2823 . . . . . . . . 9 (𝐴 ∈ ( M ‘( bday 𝑥)) ↔ 𝐴 ∈ (( O ‘( bday 𝑥)) ∪ ( N ‘( bday 𝑥))))
10 elun 4100 . . . . . . . . 9 (𝐴 ∈ (( O ‘( bday 𝑥)) ∪ ( N ‘( bday 𝑥))) ↔ (𝐴 ∈ ( O ‘( bday 𝑥)) ∨ 𝐴 ∈ ( N ‘( bday 𝑥))))
119, 10bitri 275 . . . . . . . 8 (𝐴 ∈ ( M ‘( bday 𝑥)) ↔ (𝐴 ∈ ( O ‘( bday 𝑥)) ∨ 𝐴 ∈ ( N ‘( bday 𝑥))))
12 lrold 27842 . . . . . . . . . . 11 (( L ‘𝑥) ∪ ( R ‘𝑥)) = ( O ‘( bday 𝑥))
1312eleq2i 2823 . . . . . . . . . 10 (𝐴 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ 𝐴 ∈ ( O ‘( bday 𝑥)))
14 elons 28190 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Ons ↔ (𝑥 No ∧ ( R ‘𝑥) = ∅))
1514simprbi 496 . . . . . . . . . . . . . . 15 (𝑥 ∈ Ons → ( R ‘𝑥) = ∅)
1615adantl 481 . . . . . . . . . . . . . 14 ((𝐴 No 𝑥 ∈ Ons) → ( R ‘𝑥) = ∅)
1716uneq2d 4115 . . . . . . . . . . . . 13 ((𝐴 No 𝑥 ∈ Ons) → (( L ‘𝑥) ∪ ( R ‘𝑥)) = (( L ‘𝑥) ∪ ∅))
18 un0 4341 . . . . . . . . . . . . 13 (( L ‘𝑥) ∪ ∅) = ( L ‘𝑥)
1917, 18eqtrdi 2782 . . . . . . . . . . . 12 ((𝐴 No 𝑥 ∈ Ons) → (( L ‘𝑥) ∪ ( R ‘𝑥)) = ( L ‘𝑥))
2019eleq2d 2817 . . . . . . . . . . 11 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ 𝐴 ∈ ( L ‘𝑥)))
21 simpll 766 . . . . . . . . . . . . 13 (((𝐴 No 𝑥 ∈ Ons) ∧ 𝐴 ∈ ( L ‘𝑥)) → 𝐴 No )
22 onsno 28192 . . . . . . . . . . . . . 14 (𝑥 ∈ Ons𝑥 No )
2322ad2antlr 727 . . . . . . . . . . . . 13 (((𝐴 No 𝑥 ∈ Ons) ∧ 𝐴 ∈ ( L ‘𝑥)) → 𝑥 No )
24 leftlt 27808 . . . . . . . . . . . . . 14 (𝐴 ∈ ( L ‘𝑥) → 𝐴 <s 𝑥)
2524adantl 481 . . . . . . . . . . . . 13 (((𝐴 No 𝑥 ∈ Ons) ∧ 𝐴 ∈ ( L ‘𝑥)) → 𝐴 <s 𝑥)
2621, 23, 25sltled 27708 . . . . . . . . . . . 12 (((𝐴 No 𝑥 ∈ Ons) ∧ 𝐴 ∈ ( L ‘𝑥)) → 𝐴 ≤s 𝑥)
2726ex 412 . . . . . . . . . . 11 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( L ‘𝑥) → 𝐴 ≤s 𝑥))
2820, 27sylbid 240 . . . . . . . . . 10 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) → 𝐴 ≤s 𝑥))
2913, 28biimtrrid 243 . . . . . . . . 9 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( O ‘( bday 𝑥)) → 𝐴 ≤s 𝑥))
30 newbday 27847 . . . . . . . . . . . 12 ((( bday 𝑥) ∈ On ∧ 𝐴 No ) → (𝐴 ∈ ( N ‘( bday 𝑥)) ↔ ( bday 𝐴) = ( bday 𝑥)))
311, 30mpan 690 . . . . . . . . . . 11 (𝐴 No → (𝐴 ∈ ( N ‘( bday 𝑥)) ↔ ( bday 𝐴) = ( bday 𝑥)))
3231adantr 480 . . . . . . . . . 10 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( N ‘( bday 𝑥)) ↔ ( bday 𝐴) = ( bday 𝑥)))
33 leftssold 27824 . . . . . . . . . . . . 13 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
34 fveq2 6822 . . . . . . . . . . . . . . 15 (( bday 𝐴) = ( bday 𝑥) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝑥)))
3534adantl 481 . . . . . . . . . . . . . 14 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝑥)))
36 onsleft 28197 . . . . . . . . . . . . . . 15 (𝑥 ∈ Ons → ( O ‘( bday 𝑥)) = ( L ‘𝑥))
3736ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → ( O ‘( bday 𝑥)) = ( L ‘𝑥))
3835, 37eqtr2d 2767 . . . . . . . . . . . . 13 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → ( L ‘𝑥) = ( O ‘( bday 𝐴)))
3933, 38sseqtrrid 3973 . . . . . . . . . . . 12 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → ( L ‘𝐴) ⊆ ( L ‘𝑥))
40 slelss 27854 . . . . . . . . . . . . . 14 ((𝐴 No 𝑥 No ∧ ( bday 𝐴) = ( bday 𝑥)) → (𝐴 ≤s 𝑥 ↔ ( L ‘𝐴) ⊆ ( L ‘𝑥)))
4122, 40syl3an2 1164 . . . . . . . . . . . . 13 ((𝐴 No 𝑥 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝑥)) → (𝐴 ≤s 𝑥 ↔ ( L ‘𝐴) ⊆ ( L ‘𝑥)))
42413expa 1118 . . . . . . . . . . . 12 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → (𝐴 ≤s 𝑥 ↔ ( L ‘𝐴) ⊆ ( L ‘𝑥)))
4339, 42mpbird 257 . . . . . . . . . . 11 (((𝐴 No 𝑥 ∈ Ons) ∧ ( bday 𝐴) = ( bday 𝑥)) → 𝐴 ≤s 𝑥)
4443ex 412 . . . . . . . . . 10 ((𝐴 No 𝑥 ∈ Ons) → (( bday 𝐴) = ( bday 𝑥) → 𝐴 ≤s 𝑥))
4532, 44sylbid 240 . . . . . . . . 9 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( N ‘( bday 𝑥)) → 𝐴 ≤s 𝑥))
4629, 45jaod 859 . . . . . . . 8 ((𝐴 No 𝑥 ∈ Ons) → ((𝐴 ∈ ( O ‘( bday 𝑥)) ∨ 𝐴 ∈ ( N ‘( bday 𝑥))) → 𝐴 ≤s 𝑥))
4711, 46biimtrid 242 . . . . . . 7 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( M ‘( bday 𝑥)) → 𝐴 ≤s 𝑥))
48 madebday 27845 . . . . . . . . 9 ((( bday 𝑥) ∈ On ∧ 𝐴 No ) → (𝐴 ∈ ( M ‘( bday 𝑥)) ↔ ( bday 𝐴) ⊆ ( bday 𝑥)))
491, 48mpan 690 . . . . . . . 8 (𝐴 No → (𝐴 ∈ ( M ‘( bday 𝑥)) ↔ ( bday 𝐴) ⊆ ( bday 𝑥)))
5049adantr 480 . . . . . . 7 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ∈ ( M ‘( bday 𝑥)) ↔ ( bday 𝐴) ⊆ ( bday 𝑥)))
51 slenlt 27691 . . . . . . . 8 ((𝐴 No 𝑥 No ) → (𝐴 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝐴))
5222, 51sylan2 593 . . . . . . 7 ((𝐴 No 𝑥 ∈ Ons) → (𝐴 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝐴))
5347, 50, 523imtr3d 293 . . . . . 6 ((𝐴 No 𝑥 ∈ Ons) → (( bday 𝐴) ⊆ ( bday 𝑥) → ¬ 𝑥 <s 𝐴))
5453con2d 134 . . . . 5 ((𝐴 No 𝑥 ∈ Ons) → (𝑥 <s 𝐴 → ¬ ( bday 𝐴) ⊆ ( bday 𝑥)))
55543impia 1117 . . . 4 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → ¬ ( bday 𝐴) ⊆ ( bday 𝑥))
567, 55olcnd 877 . . 3 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → ( bday 𝑥) ∈ ( bday 𝐴))
57223ad2ant2 1134 . . . 4 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → 𝑥 No )
58 oldbday 27846 . . . 4 ((( bday 𝐴) ∈ On ∧ 𝑥 No ) → (𝑥 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑥) ∈ ( bday 𝐴)))
593, 57, 58sylancr 587 . . 3 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → (𝑥 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑥) ∈ ( bday 𝐴)))
6056, 59mpbird 257 . 2 ((𝐴 No 𝑥 ∈ Ons𝑥 <s 𝐴) → 𝑥 ∈ ( O ‘( bday 𝐴)))
6160rabssdv 4020 1 (𝐴 No → {𝑥 ∈ Ons𝑥 <s 𝐴} ⊆ ( O ‘( bday 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cun 3895  wss 3897  c0 4280   class class class wbr 5089  Ord word 6305  Oncon0 6306  cfv 6481   No csur 27578   <s cslt 27579   bday cbday 27580   ≤s csle 27683   M cmade 27783   O cold 27784   N cnew 27785   L cleft 27786   R cright 27787  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-new 27790  df-left 27791  df-right 27792  df-ons 28189
This theorem is referenced by:  sltonex  28199  onsfi  28283
  Copyright terms: Public domain W3C validator