Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 33819
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclssn.1 𝐵 = (LIdeal‘𝑅)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 725 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ Ring)
3 simplr 768 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀𝐵)
4 zarclssn.1 . . . . 5 𝐵 = (LIdeal‘𝑅)
53, 4eleqtrdi 2854 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (LIdeal‘𝑅))
6 simpr 484 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} = (𝑉𝑀))
73snn0d 4800 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} ≠ ∅)
86, 7eqnetrrd 3015 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) ≠ ∅)
9 simpll 766 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1210, 11zarcls1 33815 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) = ∅ ↔ 𝑀 = (Base‘𝑅)))
1312necon3bid 2991 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
149, 5, 13syl2anc 583 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
158, 14mpbid 232 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ≠ (Base‘𝑅))
16 simpr 484 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑚)
179ad5antr 733 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑅 ∈ CRing)
18 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
19 eqid 2740 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
2019mxidlprm 33463 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
2117, 18, 20syl2anc 583 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
22 simp-4r 783 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑗)
2322, 16sstrd 4019 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑚)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
25 sseq1 4034 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
2625rabbidv 3451 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
2726adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
28 fvex 6933 . . . . . . . . . . . . . . . . . . . 20 (PrmIdeal‘𝑅) ∈ V
2928rabex 5357 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
3124, 27, 5, 30fvmptd 7036 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
326, 31eqtr2d 2781 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
33 rabeqsn 4689 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀} ↔ ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 218 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 733 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
36 vex 3492 . . . . . . . . . . . . . . 15 𝑚 ∈ V
37 eleq1w 2827 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑗 ∈ (PrmIdeal‘𝑅) ↔ 𝑚 ∈ (PrmIdeal‘𝑅)))
38 sseq2 4035 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑀𝑗𝑀𝑚))
3937, 38anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ (𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚)))
40 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (𝑗 = 𝑀𝑚 = 𝑀))
4139, 40bibi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) ↔ ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀)))
4236, 41spcv 3618 . . . . . . . . . . . . . 14 (∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4421, 23, 43mpbi2and 711 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 = 𝑀)
4516, 44sseqtrd 4049 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑀)
4645, 22eqssd 4026 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗 = 𝑀)
471ad5antr 733 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑅 ∈ Ring)
48 simpllr 775 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
49 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ¬ 𝑗 = (Base‘𝑅))
5049neqned 2953 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
5111ssmxidl 33467 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗 ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5247, 48, 50, 51syl3anc 1371 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5346, 52r19.29a 3168 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 = 𝑀)
5453ex 412 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = (Base‘𝑅) → 𝑗 = 𝑀))
5554orrd 862 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = (Base‘𝑅) ∨ 𝑗 = 𝑀))
5655orcomd 870 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5756ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5857ralrimiva 3152 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
595, 15, 583jca 1128 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))))
6011ismxidl 33455 . . . 4 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
6160biimpar 477 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
622, 59, 61syl2anc 583 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
6426adantl 481 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
6511mxidlidl 33456 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
661, 65sylan 579 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
6863, 64, 66, 67fvmptd 7036 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
691ad2antrr 725 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑅 ∈ Ring)
70 simplr 768 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀 ∈ (MaxIdeal‘𝑅))
71 simprl 770 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (PrmIdeal‘𝑅))
72 prmidlidl 33437 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
7369, 71, 72syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (LIdeal‘𝑅))
74 simprr 772 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀𝑗)
7573, 74jca 511 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗))
7611mxidlmax 33458 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
7769, 70, 75, 76syl21anc 837 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
78 eqid 2740 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
7911, 78prmidlnr 33432 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
8069, 71, 79syl2anc 583 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ≠ (Base‘𝑅))
8180neneqd 2951 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → ¬ 𝑗 = (Base‘𝑅))
8277, 81olcnd 876 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 = 𝑀)
83 simpr 484 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 = 𝑀)
8419mxidlprm 33463 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
8584adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀 ∈ (PrmIdeal‘𝑅))
8683, 85eqeltrd 2844 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 ∈ (PrmIdeal‘𝑅))
87 ssidd 4032 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗𝑗)
8883, 87eqsstrrd 4048 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀𝑗)
8986, 88jca 511 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗))
9082, 89impbida 800 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1926 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
9368, 92eqtr2d 2781 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9493adantlr 714 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9562, 94impbida 800 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  {csn 4648  cmpt 5249  cfv 6573  Basecbs 17258  .rcmulr 17312  LSSumclsm 19676  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  PrmIdealcprmidl 33428  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-lpidl 21355  df-prmidl 33429  df-mxidl 33453
This theorem is referenced by:  zarmxt1  33826
  Copyright terms: Public domain W3C validator