Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 32841
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
zarclssn.1 𝐡 = (LIdealβ€˜π‘…)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ({𝑀} = (π‘‰β€˜π‘€) ↔ 𝑀 ∈ (MaxIdealβ€˜π‘…)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐡,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 crngring 20061 . . . 4 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
21ad2antrr 724 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑅 ∈ Ring)
3 simplr 767 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ 𝐡)
4 zarclssn.1 . . . . 5 𝐡 = (LIdealβ€˜π‘…)
53, 4eleqtrdi 2843 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
6 simpr 485 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑀} = (π‘‰β€˜π‘€))
73snn0d 4778 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑀} β‰  βˆ…)
86, 7eqnetrrd 3009 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (π‘‰β€˜π‘€) β‰  βˆ…)
9 simpll 765 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
11 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
1210, 11zarcls1 32837 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdealβ€˜π‘…)) β†’ ((π‘‰β€˜π‘€) = βˆ… ↔ 𝑀 = (Baseβ€˜π‘…)))
1312necon3bid 2985 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdealβ€˜π‘…)) β†’ ((π‘‰β€˜π‘€) β‰  βˆ… ↔ 𝑀 β‰  (Baseβ€˜π‘…)))
149, 5, 13syl2anc 584 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ ((π‘‰β€˜π‘€) β‰  βˆ… ↔ 𝑀 β‰  (Baseβ€˜π‘…)))
158, 14mpbid 231 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 β‰  (Baseβ€˜π‘…))
16 simpr 485 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 βŠ† π‘š)
179ad5antr 732 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑅 ∈ CRing)
18 simplr 767 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š ∈ (MaxIdealβ€˜π‘…))
19 eqid 2732 . . . . . . . . . . . . . . 15 (LSSumβ€˜(mulGrpβ€˜π‘…)) = (LSSumβ€˜(mulGrpβ€˜π‘…))
2019mxidlprm 32574 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) β†’ π‘š ∈ (PrmIdealβ€˜π‘…))
2117, 18, 20syl2anc 584 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š ∈ (PrmIdealβ€˜π‘…))
22 simp-4r 782 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑀 βŠ† 𝑗)
2322, 16sstrd 3991 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑀 βŠ† π‘š)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗}))
25 sseq1 4006 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 β†’ (𝑖 βŠ† 𝑗 ↔ 𝑀 βŠ† 𝑗))
2625rabbidv 3440 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
2726adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑖 = 𝑀) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
28 fvex 6901 . . . . . . . . . . . . . . . . . . . 20 (PrmIdealβ€˜π‘…) ∈ V
2928rabex 5331 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V)
3124, 27, 5, 30fvmptd 7002 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (π‘‰β€˜π‘€) = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
326, 31eqtr2d 2773 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀})
33 rabeqsn 4668 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀} ↔ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 217 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 732 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
36 vex 3478 . . . . . . . . . . . . . . 15 π‘š ∈ V
37 eleq1w 2816 . . . . . . . . . . . . . . . . 17 (𝑗 = π‘š β†’ (𝑗 ∈ (PrmIdealβ€˜π‘…) ↔ π‘š ∈ (PrmIdealβ€˜π‘…)))
38 sseq2 4007 . . . . . . . . . . . . . . . . 17 (𝑗 = π‘š β†’ (𝑀 βŠ† 𝑗 ↔ 𝑀 βŠ† π‘š))
3937, 38anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑗 = π‘š β†’ ((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ (π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š)))
40 eqeq1 2736 . . . . . . . . . . . . . . . 16 (𝑗 = π‘š β†’ (𝑗 = 𝑀 ↔ π‘š = 𝑀))
4139, 40bibi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = π‘š β†’ (((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀) ↔ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀)))
4236, 41spcv 3595 . . . . . . . . . . . . . 14 (βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀) β†’ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀))
4421, 23, 43mpbi2and 710 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š = 𝑀)
4516, 44sseqtrd 4021 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 βŠ† 𝑀)
4645, 22eqssd 3998 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 = 𝑀)
471ad5antr 732 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
48 simpllr 774 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
49 simpr 485 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ Β¬ 𝑗 = (Baseβ€˜π‘…))
5049neqned 2947 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
5111ssmxidl 32578 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑗 β‰  (Baseβ€˜π‘…)) β†’ βˆƒπ‘š ∈ (MaxIdealβ€˜π‘…)𝑗 βŠ† π‘š)
5247, 48, 50, 51syl3anc 1371 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ βˆƒπ‘š ∈ (MaxIdealβ€˜π‘…)𝑗 βŠ† π‘š)
5346, 52r19.29a 3162 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 = 𝑀)
5453ex 413 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (Β¬ 𝑗 = (Baseβ€˜π‘…) β†’ 𝑗 = 𝑀))
5554orrd 861 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (𝑗 = (Baseβ€˜π‘…) ∨ 𝑗 = 𝑀))
5655orcomd 869 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
5756ex 413 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) β†’ (𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))
5857ralrimiva 3146 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))
595, 15, 583jca 1128 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))))
6011ismxidl 32566 . . . 4 (𝑅 ∈ Ring β†’ (𝑀 ∈ (MaxIdealβ€˜π‘…) ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))))
6160biimpar 478 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
622, 59, 61syl2anc 584 . 2 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗}))
6426adantl 482 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑖 = 𝑀) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
6511mxidlidl 32567 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
661, 65sylan 580 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V)
6863, 64, 66, 67fvmptd 7002 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ (π‘‰β€˜π‘€) = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
691ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑅 ∈ Ring)
70 simplr 767 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
71 simprl 769 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 ∈ (PrmIdealβ€˜π‘…))
72 prmidlidl 32550 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
7369, 71, 72syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
74 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑀 βŠ† 𝑗)
7573, 74jca 512 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗))
7611mxidlmax 32569 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
7769, 70, 75, 76syl21anc 836 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
78 eqid 2732 . . . . . . . . . . 11 (.rβ€˜π‘…) = (.rβ€˜π‘…)
7911, 78prmidlnr 32545 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
8069, 71, 79syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
8180neneqd 2945 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ Β¬ 𝑗 = (Baseβ€˜π‘…))
8277, 81olcnd 875 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 = 𝑀)
83 simpr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 = 𝑀)
8419mxidlprm 32574 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (PrmIdealβ€˜π‘…))
8584adantr 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑀 ∈ (PrmIdealβ€˜π‘…))
8683, 85eqeltrd 2833 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 ∈ (PrmIdealβ€˜π‘…))
87 ssidd 4004 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 βŠ† 𝑗)
8883, 87eqsstrrd 4020 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑀 βŠ† 𝑗)
8986, 88jca 512 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗))
9082, 89impbida 799 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ ((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1930 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 233 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀})
9368, 92eqtr2d 2773 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑀} = (π‘‰β€˜π‘€))
9493adantlr 713 . 2 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑀} = (π‘‰β€˜π‘€))
9562, 94impbida 799 1 ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ({𝑀} = (π‘‰β€˜π‘€) ↔ 𝑀 ∈ (MaxIdealβ€˜π‘…)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   ↦ cmpt 5230  β€˜cfv 6540  Basecbs 17140  .rcmulr 17194  LSSumclsm 19496  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050  LIdealclidl 20775  PrmIdealcprmidl 32541  MaxIdealcmxidl 32563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rpss 7709  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-lpidl 20873  df-prmidl 32542  df-mxidl 32564
This theorem is referenced by:  zarmxt1  32848
  Copyright terms: Public domain W3C validator