Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 33886
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclssn.1 𝐵 = (LIdeal‘𝑅)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 crngring 20163 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ Ring)
3 simplr 768 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀𝐵)
4 zarclssn.1 . . . . 5 𝐵 = (LIdeal‘𝑅)
53, 4eleqtrdi 2841 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (LIdeal‘𝑅))
6 simpr 484 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} = (𝑉𝑀))
73snn0d 4725 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} ≠ ∅)
86, 7eqnetrrd 2996 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) ≠ ∅)
9 simpll 766 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1210, 11zarcls1 33882 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) = ∅ ↔ 𝑀 = (Base‘𝑅)))
1312necon3bid 2972 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
149, 5, 13syl2anc 584 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
158, 14mpbid 232 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ≠ (Base‘𝑅))
16 simpr 484 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑚)
179ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑅 ∈ CRing)
18 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
19 eqid 2731 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
2019mxidlprm 33435 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
2117, 18, 20syl2anc 584 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
22 simp-4r 783 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑗)
2322, 16sstrd 3940 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑚)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
25 sseq1 3955 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
2625rabbidv 3402 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
2726adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
28 fvex 6835 . . . . . . . . . . . . . . . . . . . 20 (PrmIdeal‘𝑅) ∈ V
2928rabex 5275 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
3124, 27, 5, 30fvmptd 6936 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
326, 31eqtr2d 2767 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
33 rabeqsn 4617 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀} ↔ ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 218 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
36 vex 3440 . . . . . . . . . . . . . . 15 𝑚 ∈ V
37 eleq1w 2814 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑗 ∈ (PrmIdeal‘𝑅) ↔ 𝑚 ∈ (PrmIdeal‘𝑅)))
38 sseq2 3956 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑀𝑗𝑀𝑚))
3937, 38anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ (𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚)))
40 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (𝑗 = 𝑀𝑚 = 𝑀))
4139, 40bibi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) ↔ ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀)))
4236, 41spcv 3555 . . . . . . . . . . . . . 14 (∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4421, 23, 43mpbi2and 712 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 = 𝑀)
4516, 44sseqtrd 3966 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑀)
4645, 22eqssd 3947 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗 = 𝑀)
471ad5antr 734 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑅 ∈ Ring)
48 simpllr 775 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
49 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ¬ 𝑗 = (Base‘𝑅))
5049neqned 2935 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
5111ssmxidl 33439 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗 ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5247, 48, 50, 51syl3anc 1373 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5346, 52r19.29a 3140 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 = 𝑀)
5453ex 412 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = (Base‘𝑅) → 𝑗 = 𝑀))
5554orrd 863 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = (Base‘𝑅) ∨ 𝑗 = 𝑀))
5655orcomd 871 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5756ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5857ralrimiva 3124 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
595, 15, 583jca 1128 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))))
6011ismxidl 33427 . . . 4 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
6160biimpar 477 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
622, 59, 61syl2anc 584 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
6426adantl 481 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
6511mxidlidl 33428 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
661, 65sylan 580 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
6863, 64, 66, 67fvmptd 6936 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
691ad2antrr 726 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑅 ∈ Ring)
70 simplr 768 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀 ∈ (MaxIdeal‘𝑅))
71 simprl 770 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (PrmIdeal‘𝑅))
72 prmidlidl 33409 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
7369, 71, 72syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (LIdeal‘𝑅))
74 simprr 772 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀𝑗)
7573, 74jca 511 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗))
7611mxidlmax 33430 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
7769, 70, 75, 76syl21anc 837 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
78 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
7911, 78prmidlnr 33404 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
8069, 71, 79syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ≠ (Base‘𝑅))
8180neneqd 2933 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → ¬ 𝑗 = (Base‘𝑅))
8277, 81olcnd 877 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 = 𝑀)
83 simpr 484 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 = 𝑀)
8419mxidlprm 33435 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
8584adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀 ∈ (PrmIdeal‘𝑅))
8683, 85eqeltrd 2831 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 ∈ (PrmIdeal‘𝑅))
87 ssidd 3953 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗𝑗)
8883, 87eqsstrrd 3965 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀𝑗)
8986, 88jca 511 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗))
9082, 89impbida 800 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1928 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
9368, 92eqtr2d 2767 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9493adantlr 715 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9562, 94impbida 800 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cmpt 5170  cfv 6481  Basecbs 17120  .rcmulr 17162  LSSumclsm 19546  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152  LIdealclidl 21143  PrmIdealcprmidl 33400  MaxIdealcmxidl 33424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-lpidl 21259  df-prmidl 33401  df-mxidl 33425
This theorem is referenced by:  zarmxt1  33893
  Copyright terms: Public domain W3C validator