Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 33151
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
zarclssn.1 𝐡 = (LIdealβ€˜π‘…)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ({𝑀} = (π‘‰β€˜π‘€) ↔ 𝑀 ∈ (MaxIdealβ€˜π‘…)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐡,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 crngring 20139 . . . 4 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
21ad2antrr 722 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑅 ∈ Ring)
3 simplr 765 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ 𝐡)
4 zarclssn.1 . . . . 5 𝐡 = (LIdealβ€˜π‘…)
53, 4eleqtrdi 2841 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
6 simpr 483 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑀} = (π‘‰β€˜π‘€))
73snn0d 4778 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑀} β‰  βˆ…)
86, 7eqnetrrd 3007 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (π‘‰β€˜π‘€) β‰  βˆ…)
9 simpll 763 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
11 eqid 2730 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
1210, 11zarcls1 33147 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdealβ€˜π‘…)) β†’ ((π‘‰β€˜π‘€) = βˆ… ↔ 𝑀 = (Baseβ€˜π‘…)))
1312necon3bid 2983 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdealβ€˜π‘…)) β†’ ((π‘‰β€˜π‘€) β‰  βˆ… ↔ 𝑀 β‰  (Baseβ€˜π‘…)))
149, 5, 13syl2anc 582 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ ((π‘‰β€˜π‘€) β‰  βˆ… ↔ 𝑀 β‰  (Baseβ€˜π‘…)))
158, 14mpbid 231 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 β‰  (Baseβ€˜π‘…))
16 simpr 483 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 βŠ† π‘š)
179ad5antr 730 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑅 ∈ CRing)
18 simplr 765 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š ∈ (MaxIdealβ€˜π‘…))
19 eqid 2730 . . . . . . . . . . . . . . 15 (LSSumβ€˜(mulGrpβ€˜π‘…)) = (LSSumβ€˜(mulGrpβ€˜π‘…))
2019mxidlprm 32860 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) β†’ π‘š ∈ (PrmIdealβ€˜π‘…))
2117, 18, 20syl2anc 582 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š ∈ (PrmIdealβ€˜π‘…))
22 simp-4r 780 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑀 βŠ† 𝑗)
2322, 16sstrd 3991 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑀 βŠ† π‘š)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗}))
25 sseq1 4006 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 β†’ (𝑖 βŠ† 𝑗 ↔ 𝑀 βŠ† 𝑗))
2625rabbidv 3438 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
2726adantl 480 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑖 = 𝑀) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
28 fvex 6903 . . . . . . . . . . . . . . . . . . . 20 (PrmIdealβ€˜π‘…) ∈ V
2928rabex 5331 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V)
3124, 27, 5, 30fvmptd 7004 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (π‘‰β€˜π‘€) = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
326, 31eqtr2d 2771 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀})
33 rabeqsn 4668 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀} ↔ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 217 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 730 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
36 vex 3476 . . . . . . . . . . . . . . 15 π‘š ∈ V
37 eleq1w 2814 . . . . . . . . . . . . . . . . 17 (𝑗 = π‘š β†’ (𝑗 ∈ (PrmIdealβ€˜π‘…) ↔ π‘š ∈ (PrmIdealβ€˜π‘…)))
38 sseq2 4007 . . . . . . . . . . . . . . . . 17 (𝑗 = π‘š β†’ (𝑀 βŠ† 𝑗 ↔ 𝑀 βŠ† π‘š))
3937, 38anbi12d 629 . . . . . . . . . . . . . . . 16 (𝑗 = π‘š β†’ ((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ (π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š)))
40 eqeq1 2734 . . . . . . . . . . . . . . . 16 (𝑗 = π‘š β†’ (𝑗 = 𝑀 ↔ π‘š = 𝑀))
4139, 40bibi12d 344 . . . . . . . . . . . . . . 15 (𝑗 = π‘š β†’ (((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀) ↔ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀)))
4236, 41spcv 3594 . . . . . . . . . . . . . 14 (βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀) β†’ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ ((π‘š ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† π‘š) ↔ π‘š = 𝑀))
4421, 23, 43mpbi2and 708 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ π‘š = 𝑀)
4516, 44sseqtrd 4021 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 βŠ† 𝑀)
4645, 22eqssd 3998 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) ∧ π‘š ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 βŠ† π‘š) β†’ 𝑗 = 𝑀)
471ad5antr 730 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
48 simpllr 772 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
49 simpr 483 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ Β¬ 𝑗 = (Baseβ€˜π‘…))
5049neqned 2945 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
5111ssmxidl 32864 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑗 β‰  (Baseβ€˜π‘…)) β†’ βˆƒπ‘š ∈ (MaxIdealβ€˜π‘…)𝑗 βŠ† π‘š)
5247, 48, 50, 51syl3anc 1369 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ βˆƒπ‘š ∈ (MaxIdealβ€˜π‘…)𝑗 βŠ† π‘š)
5346, 52r19.29a 3160 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) ∧ Β¬ 𝑗 = (Baseβ€˜π‘…)) β†’ 𝑗 = 𝑀)
5453ex 411 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (Β¬ 𝑗 = (Baseβ€˜π‘…) β†’ 𝑗 = 𝑀))
5554orrd 859 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (𝑗 = (Baseβ€˜π‘…) ∨ 𝑗 = 𝑀))
5655orcomd 867 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) ∧ 𝑀 βŠ† 𝑗) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
5756ex 411 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) ∧ 𝑗 ∈ (LIdealβ€˜π‘…)) β†’ (𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))
5857ralrimiva 3144 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))
595, 15, 583jca 1126 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))))
6011ismxidl 32852 . . . 4 (𝑅 ∈ Ring β†’ (𝑀 ∈ (MaxIdealβ€˜π‘…) ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))))
6160biimpar 476 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…))))) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
622, 59, 61syl2anc 582 . 2 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ {𝑀} = (π‘‰β€˜π‘€)) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗}))
6426adantl 480 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑖 = 𝑀) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
6511mxidlidl 32853 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
661, 65sylan 578 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (LIdealβ€˜π‘…))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} ∈ V)
6863, 64, 66, 67fvmptd 7004 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ (π‘‰β€˜π‘€) = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗})
691ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑅 ∈ Ring)
70 simplr 765 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑀 ∈ (MaxIdealβ€˜π‘…))
71 simprl 767 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 ∈ (PrmIdealβ€˜π‘…))
72 prmidlidl 32836 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
7369, 71, 72syl2anc 582 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 ∈ (LIdealβ€˜π‘…))
74 simprr 769 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑀 βŠ† 𝑗)
7573, 74jca 510 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗))
7611mxidlmax 32855 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
7769, 70, 75, 76syl21anc 834 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ (𝑗 = 𝑀 ∨ 𝑗 = (Baseβ€˜π‘…)))
78 eqid 2730 . . . . . . . . . . 11 (.rβ€˜π‘…) = (.rβ€˜π‘…)
7911, 78prmidlnr 32831 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
8069, 71, 79syl2anc 582 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 β‰  (Baseβ€˜π‘…))
8180neneqd 2943 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ Β¬ 𝑗 = (Baseβ€˜π‘…))
8277, 81olcnd 873 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗)) β†’ 𝑗 = 𝑀)
83 simpr 483 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 = 𝑀)
8419mxidlprm 32860 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ 𝑀 ∈ (PrmIdealβ€˜π‘…))
8584adantr 479 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑀 ∈ (PrmIdealβ€˜π‘…))
8683, 85eqeltrd 2831 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 ∈ (PrmIdealβ€˜π‘…))
87 ssidd 4004 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑗 βŠ† 𝑗)
8883, 87eqsstrrd 4020 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ 𝑀 βŠ† 𝑗)
8986, 88jca 510 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) ∧ 𝑗 = 𝑀) β†’ (𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗))
9082, 89impbida 797 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ ((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1928 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ βˆ€π‘—((𝑗 ∈ (PrmIdealβ€˜π‘…) ∧ 𝑀 βŠ† 𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 233 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑀 βŠ† 𝑗} = {𝑀})
9368, 92eqtr2d 2771 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑀} = (π‘‰β€˜π‘€))
9493adantlr 711 . 2 (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑀 ∈ (MaxIdealβ€˜π‘…)) β†’ {𝑀} = (π‘‰β€˜π‘€))
9562, 94impbida 797 1 ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ({𝑀} = (π‘‰β€˜π‘€) ↔ 𝑀 ∈ (MaxIdealβ€˜π‘…)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085  βˆ€wal 1537   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   ↦ cmpt 5230  β€˜cfv 6542  Basecbs 17148  .rcmulr 17202  LSSumclsm 19543  mulGrpcmgp 20028  Ringcrg 20127  CRingccrg 20128  LIdealclidl 20928  PrmIdealcprmidl 32827  MaxIdealcmxidl 32849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-cntz 19222  df-lsm 19545  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrg 20459  df-lmod 20616  df-lss 20687  df-lsp 20727  df-sra 20930  df-rgmod 20931  df-lidl 20932  df-rsp 20933  df-lpidl 21081  df-prmidl 32828  df-mxidl 32850
This theorem is referenced by:  zarmxt1  33158
  Copyright terms: Public domain W3C validator