Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 32454
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclssn.1 𝐵 = (LIdeal‘𝑅)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 crngring 19976 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 724 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ Ring)
3 simplr 767 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀𝐵)
4 zarclssn.1 . . . . 5 𝐵 = (LIdeal‘𝑅)
53, 4eleqtrdi 2848 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (LIdeal‘𝑅))
6 simpr 485 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} = (𝑉𝑀))
73snn0d 4736 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} ≠ ∅)
86, 7eqnetrrd 3012 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) ≠ ∅)
9 simpll 765 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1210, 11zarcls1 32450 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) = ∅ ↔ 𝑀 = (Base‘𝑅)))
1312necon3bid 2988 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
149, 5, 13syl2anc 584 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
158, 14mpbid 231 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ≠ (Base‘𝑅))
16 simpr 485 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑚)
179ad5antr 732 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑅 ∈ CRing)
18 simplr 767 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
19 eqid 2736 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
2019mxidlprm 32237 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
2117, 18, 20syl2anc 584 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
22 simp-4r 782 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑗)
2322, 16sstrd 3954 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑚)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
25 sseq1 3969 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
2625rabbidv 3415 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
2726adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
28 fvex 6855 . . . . . . . . . . . . . . . . . . . 20 (PrmIdeal‘𝑅) ∈ V
2928rabex 5289 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
3124, 27, 5, 30fvmptd 6955 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
326, 31eqtr2d 2777 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
33 rabeqsn 4627 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀} ↔ ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 217 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 732 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
36 vex 3449 . . . . . . . . . . . . . . 15 𝑚 ∈ V
37 eleq1w 2820 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑗 ∈ (PrmIdeal‘𝑅) ↔ 𝑚 ∈ (PrmIdeal‘𝑅)))
38 sseq2 3970 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑀𝑗𝑀𝑚))
3937, 38anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ (𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚)))
40 eqeq1 2740 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (𝑗 = 𝑀𝑚 = 𝑀))
4139, 40bibi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) ↔ ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀)))
4236, 41spcv 3564 . . . . . . . . . . . . . 14 (∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4421, 23, 43mpbi2and 710 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 = 𝑀)
4516, 44sseqtrd 3984 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑀)
4645, 22eqssd 3961 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗 = 𝑀)
471ad5antr 732 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑅 ∈ Ring)
48 simpllr 774 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
49 simpr 485 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ¬ 𝑗 = (Base‘𝑅))
5049neqned 2950 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
5111ssmxidl 32239 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗 ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5247, 48, 50, 51syl3anc 1371 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5346, 52r19.29a 3159 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 = 𝑀)
5453ex 413 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = (Base‘𝑅) → 𝑗 = 𝑀))
5554orrd 861 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = (Base‘𝑅) ∨ 𝑗 = 𝑀))
5655orcomd 869 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5756ex 413 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5857ralrimiva 3143 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
595, 15, 583jca 1128 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))))
6011ismxidl 32231 . . . 4 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
6160biimpar 478 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
622, 59, 61syl2anc 584 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
6426adantl 482 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
6511mxidlidl 32232 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
661, 65sylan 580 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
6863, 64, 66, 67fvmptd 6955 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
691ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑅 ∈ Ring)
70 simplr 767 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀 ∈ (MaxIdeal‘𝑅))
71 simprl 769 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (PrmIdeal‘𝑅))
72 prmidlidl 32216 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
7369, 71, 72syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (LIdeal‘𝑅))
74 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀𝑗)
7573, 74jca 512 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗))
7611mxidlmax 32234 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
7769, 70, 75, 76syl21anc 836 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
78 eqid 2736 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
7911, 78prmidlnr 32211 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
8069, 71, 79syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ≠ (Base‘𝑅))
8180neneqd 2948 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → ¬ 𝑗 = (Base‘𝑅))
8277, 81olcnd 875 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 = 𝑀)
83 simpr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 = 𝑀)
8419mxidlprm 32237 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
8584adantr 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀 ∈ (PrmIdeal‘𝑅))
8683, 85eqeltrd 2838 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 ∈ (PrmIdeal‘𝑅))
87 ssidd 3967 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗𝑗)
8883, 87eqsstrrd 3983 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀𝑗)
8986, 88jca 512 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗))
9082, 89impbida 799 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1930 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 233 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
9368, 92eqtr2d 2777 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9493adantlr 713 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9562, 94impbida 799 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  {csn 4586  cmpt 5188  cfv 6496  Basecbs 17083  .rcmulr 17134  LSSumclsm 19416  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  LIdealclidl 20631  PrmIdealcprmidl 32207  MaxIdealcmxidl 32228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-lpidl 20713  df-prmidl 32208  df-mxidl 32229
This theorem is referenced by:  zarmxt1  32461
  Copyright terms: Public domain W3C validator