Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclssn Structured version   Visualization version   GIF version

Theorem zarclssn 31725
Description: The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarclssn.1 𝐵 = (LIdeal‘𝑅)
Assertion
Ref Expression
zarclssn ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑉   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑗,𝑉

Proof of Theorem zarclssn
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 crngring 19710 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 722 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ Ring)
3 simplr 765 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀𝐵)
4 zarclssn.1 . . . . 5 𝐵 = (LIdeal‘𝑅)
53, 4eleqtrdi 2849 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (LIdeal‘𝑅))
6 simpr 484 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} = (𝑉𝑀))
73snn0d 4708 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑀} ≠ ∅)
86, 7eqnetrrd 3011 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) ≠ ∅)
9 simpll 763 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑅 ∈ CRing)
10 zarclsx.1 . . . . . . . 8 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1210, 11zarcls1 31721 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) = ∅ ↔ 𝑀 = (Base‘𝑅)))
1312necon3bid 2987 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (LIdeal‘𝑅)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
149, 5, 13syl2anc 583 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ((𝑉𝑀) ≠ ∅ ↔ 𝑀 ≠ (Base‘𝑅)))
158, 14mpbid 231 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ≠ (Base‘𝑅))
16 simpr 484 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑚)
179ad5antr 730 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑅 ∈ CRing)
18 simplr 765 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
19 eqid 2738 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
2019mxidlprm 31542 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
2117, 18, 20syl2anc 583 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
22 simp-4r 780 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑗)
2322, 16sstrd 3927 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑀𝑚)
2410a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
25 sseq1 3942 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
2625rabbidv 3404 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑀 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
2726adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
28 fvex 6769 . . . . . . . . . . . . . . . . . . . 20 (PrmIdeal‘𝑅) ∈ V
2928rabex 5251 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
3124, 27, 5, 30fvmptd 6864 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
326, 31eqtr2d 2779 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
33 rabeqsn 4599 . . . . . . . . . . . . . . . 16 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀} ↔ ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3432, 33sylib 217 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
3534ad5antr 730 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
36 vex 3426 . . . . . . . . . . . . . . 15 𝑚 ∈ V
37 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑗 ∈ (PrmIdeal‘𝑅) ↔ 𝑚 ∈ (PrmIdeal‘𝑅)))
38 sseq2 3943 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (𝑀𝑗𝑀𝑚))
3937, 38anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ (𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚)))
40 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (𝑗 = 𝑀𝑚 = 𝑀))
4139, 40bibi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) ↔ ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀)))
4236, 41spcv 3534 . . . . . . . . . . . . . 14 (∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4335, 42syl 17 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → ((𝑚 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑚) ↔ 𝑚 = 𝑀))
4421, 23, 43mpbi2and 708 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑚 = 𝑀)
4516, 44sseqtrd 3957 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗𝑀)
4645, 22eqssd 3934 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗𝑚) → 𝑗 = 𝑀)
471ad5antr 730 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑅 ∈ Ring)
48 simpllr 772 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
49 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ¬ 𝑗 = (Base‘𝑅))
5049neqned 2949 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
5111ssmxidl 31544 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗 ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5247, 48, 50, 51syl3anc 1369 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑗𝑚)
5346, 52r19.29a 3217 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = (Base‘𝑅)) → 𝑗 = 𝑀)
5453ex 412 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = (Base‘𝑅) → 𝑗 = 𝑀))
5554orrd 859 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = (Base‘𝑅) ∨ 𝑗 = 𝑀))
5655orcomd 867 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5756ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5857ralrimiva 3107 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
595, 15, 583jca 1126 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))))
6011ismxidl 31536 . . . 4 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
6160biimpar 477 . . 3 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
622, 59, 61syl2anc 583 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ {𝑀} = (𝑉𝑀)) → 𝑀 ∈ (MaxIdeal‘𝑅))
6310a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
6426adantl 481 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 = 𝑀) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
6511mxidlidl 31537 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
661, 65sylan 579 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
6729a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} ∈ V)
6863, 64, 66, 67fvmptd 6864 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑉𝑀) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗})
691ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑅 ∈ Ring)
70 simplr 765 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀 ∈ (MaxIdeal‘𝑅))
71 simprl 767 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (PrmIdeal‘𝑅))
72 prmidlidl 31521 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
7369, 71, 72syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ∈ (LIdeal‘𝑅))
74 simprr 769 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑀𝑗)
7573, 74jca 511 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗))
7611mxidlmax 31539 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
7769, 70, 75, 76syl21anc 834 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
78 eqid 2738 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
7911, 78prmidlnr 31516 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ≠ (Base‘𝑅))
8069, 71, 79syl2anc 583 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 ≠ (Base‘𝑅))
8180neneqd 2947 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → ¬ 𝑗 = (Base‘𝑅))
8277, 81olcnd 873 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗)) → 𝑗 = 𝑀)
83 simpr 484 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 = 𝑀)
8419mxidlprm 31542 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
8584adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀 ∈ (PrmIdeal‘𝑅))
8683, 85eqeltrd 2839 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗 ∈ (PrmIdeal‘𝑅))
87 ssidd 3940 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑗𝑗)
8883, 87eqsstrrd 3956 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → 𝑀𝑗)
8986, 88jca 511 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑗 = 𝑀) → (𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗))
9082, 89impbida 797 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9190alrimiv 1931 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗((𝑗 ∈ (PrmIdeal‘𝑅) ∧ 𝑀𝑗) ↔ 𝑗 = 𝑀))
9291, 33sylibr 233 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑀𝑗} = {𝑀})
9368, 92eqtr2d 2779 . . 3 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9493adantlr 711 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → {𝑀} = (𝑉𝑀))
9562, 94impbida 797 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ({𝑀} = (𝑉𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  {csn 4558  cmpt 5153  cfv 6418  Basecbs 16840  .rcmulr 16889  LSSumclsm 19154  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  PrmIdealcprmidl 31512  MaxIdealcmxidl 31533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-lpidl 20427  df-prmidl 31513  df-mxidl 31534
This theorem is referenced by:  zarmxt1  31732
  Copyright terms: Public domain W3C validator