| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onfisupcl | Structured version Visualization version GIF version | ||
| Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9308. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onfisupcl | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ⊆ On) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ∈ Fin) | |
| 3 | simprr 772 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ≠ ∅) | |
| 4 | 1, 2, 3 | 3jca 1128 | . . 3 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → (𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) |
| 5 | ordunifi 9308 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → ∪ 𝐴 ∈ 𝐴) |
| 7 | 6 | ex 412 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 Oncon0 6363 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-en 8968 df-fin 8971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |