Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfisupcl Structured version   Visualization version   GIF version

Theorem onfisupcl 43197
Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9318. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onfisupcl ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴))

Proof of Theorem onfisupcl
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ⊆ On)
2 simprl 770 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ∈ Fin)
3 simprr 772 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ≠ ∅)
41, 2, 33jca 1126 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → (𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
5 ordunifi 9318 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
64, 5syl 17 . 2 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴𝐴)
76ex 412 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2104  wne 2936  wss 3963  c0 4339   cuni 4914  Oncon0 6380  Fincfn 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-om 7881  df-en 8979  df-fin 8982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator