Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfisupcl Structured version   Visualization version   GIF version

Theorem onfisupcl 42743
Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9316. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onfisupcl ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴))

Proof of Theorem onfisupcl
StepHypRef Expression
1 simpll 765 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ⊆ On)
2 simprl 769 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ∈ Fin)
3 simprr 771 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴 ≠ ∅)
41, 2, 33jca 1125 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → (𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
5 ordunifi 9316 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
64, 5syl 17 . 2 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) → 𝐴𝐴)
76ex 411 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2098  wne 2930  wss 3939  c0 4318   cuni 4903  Oncon0 6364  Fincfn 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7869  df-en 8963  df-fin 8966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator