![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrlttri5d | Structured version Visualization version GIF version |
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrlttri5d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttri5d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttri5d.aneb | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
xrlttri5d.nlt | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
xrlttri5d | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri5d.aneb | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2951 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | xrlttri5d.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttri5d.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttri3 13205 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
6 | 3, 4, 5 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
7 | 2, 6 | mtbid 324 | . . . . 5 ⊢ (𝜑 → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
8 | oran 990 | . . . . 5 ⊢ ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
9 | 7, 8 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) |
10 | xrlttri5d.nlt | . . . 4 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
11 | 9, 10 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴)) |
12 | pm5.61 1001 | . . 3 ⊢ (((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴) ↔ (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
13 | 11, 12 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
14 | 13 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: lttri5d 45214 |
Copyright terms: Public domain | W3C validator |