Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlttri5d Structured version   Visualization version   GIF version

Theorem xrlttri5d 41853
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrlttri5d.a (𝜑𝐴 ∈ ℝ*)
xrlttri5d.b (𝜑𝐵 ∈ ℝ*)
xrlttri5d.aneb (𝜑𝐴𝐵)
xrlttri5d.nlt (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
xrlttri5d (𝜑𝐴 < 𝐵)

Proof of Theorem xrlttri5d
StepHypRef Expression
1 xrlttri5d.aneb . . . . . . 7 (𝜑𝐴𝐵)
21neneqd 3016 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
3 xrlttri5d.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
4 xrlttri5d.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
5 xrlttri3 12524 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
63, 4, 5syl2anc 587 . . . . . 6 (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
72, 6mtbid 327 . . . . 5 (𝜑 → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
8 oran 987 . . . . 5 ((𝐴 < 𝐵𝐵 < 𝐴) ↔ ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
97, 8sylibr 237 . . . 4 (𝜑 → (𝐴 < 𝐵𝐵 < 𝐴))
10 xrlttri5d.nlt . . . 4 (𝜑 → ¬ 𝐵 < 𝐴)
119, 10jca 515 . . 3 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴))
12 pm5.61 998 . . 3 (((𝐴 < 𝐵𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴) ↔ (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
1311, 12sylib 221 . 2 (𝜑 → (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
1413simpld 498 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  *cxr 10663   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669
This theorem is referenced by:  lttri5d  41870
  Copyright terms: Public domain W3C validator