Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlttri5d Structured version   Visualization version   GIF version

Theorem xrlttri5d 45260
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrlttri5d.a (𝜑𝐴 ∈ ℝ*)
xrlttri5d.b (𝜑𝐵 ∈ ℝ*)
xrlttri5d.aneb (𝜑𝐴𝐵)
xrlttri5d.nlt (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
xrlttri5d (𝜑𝐴 < 𝐵)

Proof of Theorem xrlttri5d
StepHypRef Expression
1 xrlttri5d.aneb . . . . . . 7 (𝜑𝐴𝐵)
21neneqd 2937 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
3 xrlttri5d.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
4 xrlttri5d.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
5 xrlttri3 13157 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
72, 6mtbid 324 . . . . 5 (𝜑 → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
8 oran 991 . . . . 5 ((𝐴 < 𝐵𝐵 < 𝐴) ↔ ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
97, 8sylibr 234 . . . 4 (𝜑 → (𝐴 < 𝐵𝐵 < 𝐴))
10 xrlttri5d.nlt . . . 4 (𝜑 → ¬ 𝐵 < 𝐴)
119, 10jca 511 . . 3 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴))
12 pm5.61 1002 . . 3 (((𝐴 < 𝐵𝐵 < 𝐴) ∧ ¬ 𝐵 < 𝐴) ↔ (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
1311, 12sylib 218 . 2 (𝜑 → (𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
1413simpld 494 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  *cxr 11266   < clt 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272
This theorem is referenced by:  lttri5d  45276
  Copyright terms: Public domain W3C validator