Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Visualization version   GIF version

Theorem ftc1anclem1 35850
Description: Lemma for ftc1anc 35858- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 24822, but this proof avoids ax-cc 10191. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)

Proof of Theorem ftc1anclem1
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6959 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ)
21recnd 11003 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
3 id 22 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
43feqmptd 6837 . . . 4 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
5 absf 15049 . . . . . 6 abs:ℂ⟶ℝ
65a1i 11 . . . . 5 (𝐹:𝐴⟶ℝ → abs:ℂ⟶ℝ)
76feqmptd 6837 . . . 4 (𝐹:𝐴⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
8 fveq2 6774 . . . 4 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
92, 4, 7, 8fmptco 7001 . . 3 (𝐹:𝐴⟶ℝ → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
109adantr 481 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
112abscld 15148 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (abs‘(𝐹𝑡)) ∈ ℝ)
1211fmpttd 6989 . . . 4 (𝐹:𝐴⟶ℝ → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
1312adantr 481 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
14 fdm 6609 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
1514adantr 481 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 = 𝐴)
16 mbfdm 24790 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1716adantl 482 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 ∈ dom vol)
1815, 17eqeltrrd 2840 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → 𝐴 ∈ dom vol)
19 rexr 11021 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
20 elioopnf 13175 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2211biantrurd 533 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2322bicomd 222 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡))) ↔ 𝑥 < (abs‘(𝐹𝑡))))
2421, 23sylan9bbr 511 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ 𝑥 < (abs‘(𝐹𝑡))))
25 ltnle 11054 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2625ancoms 459 . . . . . . . . . . . 12 (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2711, 26sylan 580 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
28 absle 15027 . . . . . . . . . . . . . . 15 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
291, 28sylan 580 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
30 renegcl 11284 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
31 lenlt 11053 . . . . . . . . . . . . . . . . 17 ((-𝑥 ∈ ℝ ∧ (𝐹𝑡) ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
3230, 1, 31syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
331biantrurd 533 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((𝐹𝑡) < -𝑥 ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3430rexrd 11025 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ*)
35 elioomnf 13176 . . . . . . . . . . . . . . . . . . . 20 (-𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3736bicomd 222 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥) ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3833, 37sylan9bb 510 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) < -𝑥 ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3938notbid 318 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑡) < -𝑥 ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4032, 39bitrd 278 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
41 lenlt 11053 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
421, 41sylan 580 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
431biantrurd 533 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (𝐹𝑡) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
44 elioopnf 13175 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4519, 44syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4645bicomd 222 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡)) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4743, 46sylan9bb 510 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (𝐹𝑡) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4847notbid 318 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4942, 48bitrd 278 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5040, 49anbi12d 631 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥) ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5129, 50bitrd 278 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5251notbid 318 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
53 elun 4083 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)))
54 oran 987 . . . . . . . . . . . . 13 (((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5553, 54bitri 274 . . . . . . . . . . . 12 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5652, 55bitr4di 289 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5724, 27, 563bitrd 305 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5857an32s 649 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5958rabbidva 3413 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))})
60 eqid 2738 . . . . . . . . 9 (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡)))
6160mptpreima 6141 . . . . . . . 8 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)}
62 eqid 2738 . . . . . . . . 9 (𝑡𝐴 ↦ (𝐹𝑡)) = (𝑡𝐴 ↦ (𝐹𝑡))
6362mptpreima 6141 . . . . . . . 8 ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))}
6459, 61, 633eqtr4g 2803 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
65 simpl 483 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
6665feqmptd 6837 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6766cnveqd 5784 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6867imaeq1d 5968 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6964, 68eqtr4d 2781 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
70 imaundi 6053 . . . . . 6 (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞)))
7169, 70eqtrdi 2794 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
7271adantlr 712 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
73 mbfima 24794 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)-𝑥)) ∈ dom vol)
74 mbfima 24794 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
75 unmbl 24701 . . . . . . 7 (((𝐹 “ (-∞(,)-𝑥)) ∈ dom vol ∧ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7673, 74, 75syl2anc 584 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7776ancoms 459 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7877adantr 481 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7972, 78eqeltrd 2839 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
80 abslt 15026 . . . . . . . . . . 11 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
811, 80sylan 580 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
82 elioomnf 13176 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8319, 82syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8411biantrurd 533 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8584bicomd 222 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8683, 85sylan9bbr 511 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8734, 19jca 512 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (-𝑥 ∈ ℝ*𝑥 ∈ ℝ*))
881rexrd 11025 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ*)
89 elioo5 13136 . . . . . . . . . . . 12 ((-𝑥 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
90893expa 1117 . . . . . . . . . . 11 (((-𝑥 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9187, 88, 90syl2anr 597 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9281, 86, 913bitr4d 311 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9392an32s 649 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9493rabbidva 3413 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)})
9560mptpreima 6141 . . . . . . 7 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)}
9662mptpreima 6141 . . . . . . 7 ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)}
9794, 95, 963eqtr4g 2803 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9867imaeq1d 5968 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9997, 98eqtr4d 2781 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
10099adantlr 712 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
101 mbfima 24794 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
102101ancoms 459 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
103102adantr 481 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
104100, 103eqeltrd 2839 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
10513, 18, 79, 104ismbf2d 24804 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
10610, 105eqeltrd 2839 1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {crab 3068  cun 3885   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  cima 5592  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  -cneg 11206  (,)cioo 13079  abscabs 14945  volcvol 24627  MblFncmbf 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783
This theorem is referenced by:  ftc1anclem2  35851  ftc1anclem4  35853  ftc1anclem5  35854  ftc1anclem6  35855  ftc1anclem8  35857
  Copyright terms: Public domain W3C validator