Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Visualization version   GIF version

Theorem ftc1anclem1 37660
Description: Lemma for ftc1anc 37668- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 25535, but this proof avoids ax-cc 10364. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)

Proof of Theorem ftc1anclem1
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7035 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ)
21recnd 11178 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
3 id 22 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
43feqmptd 6911 . . . 4 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
5 absf 15280 . . . . . 6 abs:ℂ⟶ℝ
65a1i 11 . . . . 5 (𝐹:𝐴⟶ℝ → abs:ℂ⟶ℝ)
76feqmptd 6911 . . . 4 (𝐹:𝐴⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
8 fveq2 6840 . . . 4 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
92, 4, 7, 8fmptco 7083 . . 3 (𝐹:𝐴⟶ℝ → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
109adantr 480 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
112abscld 15381 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (abs‘(𝐹𝑡)) ∈ ℝ)
1211fmpttd 7069 . . . 4 (𝐹:𝐴⟶ℝ → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
1312adantr 480 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
14 fdm 6679 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
1514adantr 480 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 = 𝐴)
16 mbfdm 25503 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1716adantl 481 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 ∈ dom vol)
1815, 17eqeltrrd 2829 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → 𝐴 ∈ dom vol)
19 rexr 11196 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
20 elioopnf 13380 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2211biantrurd 532 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2322bicomd 223 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡))) ↔ 𝑥 < (abs‘(𝐹𝑡))))
2421, 23sylan9bbr 510 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ 𝑥 < (abs‘(𝐹𝑡))))
25 ltnle 11229 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2625ancoms 458 . . . . . . . . . . . 12 (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2711, 26sylan 580 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
28 absle 15258 . . . . . . . . . . . . . . 15 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
291, 28sylan 580 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
30 renegcl 11461 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
31 lenlt 11228 . . . . . . . . . . . . . . . . 17 ((-𝑥 ∈ ℝ ∧ (𝐹𝑡) ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
3230, 1, 31syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
331biantrurd 532 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((𝐹𝑡) < -𝑥 ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3430rexrd 11200 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ*)
35 elioomnf 13381 . . . . . . . . . . . . . . . . . . . 20 (-𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3736bicomd 223 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥) ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3833, 37sylan9bb 509 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) < -𝑥 ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3938notbid 318 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑡) < -𝑥 ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4032, 39bitrd 279 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
41 lenlt 11228 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
421, 41sylan 580 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
431biantrurd 532 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (𝐹𝑡) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
44 elioopnf 13380 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4519, 44syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4645bicomd 223 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡)) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4743, 46sylan9bb 509 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (𝐹𝑡) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4847notbid 318 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4942, 48bitrd 279 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5040, 49anbi12d 632 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥) ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5129, 50bitrd 279 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5251notbid 318 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
53 elun 4112 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)))
54 oran 991 . . . . . . . . . . . . 13 (((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5553, 54bitri 275 . . . . . . . . . . . 12 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5652, 55bitr4di 289 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5724, 27, 563bitrd 305 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5857an32s 652 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5958rabbidva 3409 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))})
60 eqid 2729 . . . . . . . . 9 (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡)))
6160mptpreima 6199 . . . . . . . 8 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)}
62 eqid 2729 . . . . . . . . 9 (𝑡𝐴 ↦ (𝐹𝑡)) = (𝑡𝐴 ↦ (𝐹𝑡))
6362mptpreima 6199 . . . . . . . 8 ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))}
6459, 61, 633eqtr4g 2789 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
65 simpl 482 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
6665feqmptd 6911 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6766cnveqd 5829 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6867imaeq1d 6019 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6964, 68eqtr4d 2767 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
70 imaundi 6110 . . . . . 6 (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞)))
7169, 70eqtrdi 2780 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
7271adantlr 715 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
73 mbfima 25507 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)-𝑥)) ∈ dom vol)
74 mbfima 25507 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
75 unmbl 25414 . . . . . . 7 (((𝐹 “ (-∞(,)-𝑥)) ∈ dom vol ∧ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7673, 74, 75syl2anc 584 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7776ancoms 458 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7877adantr 480 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7972, 78eqeltrd 2828 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
80 abslt 15257 . . . . . . . . . . 11 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
811, 80sylan 580 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
82 elioomnf 13381 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8319, 82syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8411biantrurd 532 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8584bicomd 223 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8683, 85sylan9bbr 510 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8734, 19jca 511 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (-𝑥 ∈ ℝ*𝑥 ∈ ℝ*))
881rexrd 11200 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ*)
89 elioo5 13340 . . . . . . . . . . . 12 ((-𝑥 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
90893expa 1118 . . . . . . . . . . 11 (((-𝑥 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9187, 88, 90syl2anr 597 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9281, 86, 913bitr4d 311 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9392an32s 652 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9493rabbidva 3409 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)})
9560mptpreima 6199 . . . . . . 7 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)}
9662mptpreima 6199 . . . . . . 7 ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)}
9794, 95, 963eqtr4g 2789 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9867imaeq1d 6019 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9997, 98eqtr4d 2767 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
10099adantlr 715 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
101 mbfima 25507 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
102101ancoms 458 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
103102adantr 480 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
104100, 103eqeltrd 2828 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
10513, 18, 79, 104ismbf2d 25517 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
10610, 105eqeltrd 2828 1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3402  cun 3909   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  cima 5634  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  -cneg 11382  (,)cioo 13282  abscabs 15176  volcvol 25340  MblFncmbf 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496
This theorem is referenced by:  ftc1anclem2  37661  ftc1anclem4  37663  ftc1anclem5  37664  ftc1anclem6  37665  ftc1anclem8  37667
  Copyright terms: Public domain W3C validator