Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Visualization version   GIF version

Theorem ftc1anclem1 33817
Description: Lemma for ftc1anc 33825- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 23645, but this proof avoids ax-cc 9459. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)

Proof of Theorem ftc1anclem1
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6500 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ)
21recnd 10270 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
3 id 22 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
43feqmptd 6391 . . . 4 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
5 absf 14285 . . . . . 6 abs:ℂ⟶ℝ
65a1i 11 . . . . 5 (𝐹:𝐴⟶ℝ → abs:ℂ⟶ℝ)
76feqmptd 6391 . . . 4 (𝐹:𝐴⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
8 fveq2 6332 . . . 4 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
92, 4, 7, 8fmptco 6539 . . 3 (𝐹:𝐴⟶ℝ → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
109adantr 466 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
112abscld 14383 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (abs‘(𝐹𝑡)) ∈ ℝ)
12 eqid 2771 . . . . 5 (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡)))
1311, 12fmptd 6527 . . . 4 (𝐹:𝐴⟶ℝ → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
1413adantr 466 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
15 fdm 6191 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
1615adantr 466 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 = 𝐴)
17 mbfdm 23614 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1817adantl 467 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 ∈ dom vol)
1916, 18eqeltrrd 2851 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → 𝐴 ∈ dom vol)
20 rexr 10287 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21 elioopnf 12473 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2220, 21syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2311biantrurd 516 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2423bicomd 213 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡))) ↔ 𝑥 < (abs‘(𝐹𝑡))))
2522, 24sylan9bbr 494 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ 𝑥 < (abs‘(𝐹𝑡))))
26 ltnle 10319 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2726ancoms 455 . . . . . . . . . . . 12 (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2811, 27sylan 561 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
29 absle 14263 . . . . . . . . . . . . . . 15 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
301, 29sylan 561 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
31 renegcl 10546 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
32 lenlt 10318 . . . . . . . . . . . . . . . . 17 ((-𝑥 ∈ ℝ ∧ (𝐹𝑡) ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
3331, 1, 32syl2anr 576 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
341biantrurd 516 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((𝐹𝑡) < -𝑥 ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3531rexrd 10291 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ*)
36 elioomnf 12474 . . . . . . . . . . . . . . . . . . . 20 (-𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3837bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥) ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3934, 38sylan9bb 493 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) < -𝑥 ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4039notbid 307 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑡) < -𝑥 ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4133, 40bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
42 lenlt 10318 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
431, 42sylan 561 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
441biantrurd 516 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (𝐹𝑡) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
45 elioopnf 12473 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4620, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4746bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡)) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4844, 47sylan9bb 493 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (𝐹𝑡) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4948notbid 307 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5043, 49bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5141, 50anbi12d 608 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥) ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5230, 51bitrd 268 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5352notbid 307 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
54 elun 3904 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)))
55 oran 948 . . . . . . . . . . . . 13 (((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5654, 55bitri 264 . . . . . . . . . . . 12 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5753, 56syl6bbr 278 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5825, 28, 573bitrd 294 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5958an32s 623 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6059rabbidva 3338 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))})
6112mptpreima 5772 . . . . . . . 8 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)}
62 eqid 2771 . . . . . . . . 9 (𝑡𝐴 ↦ (𝐹𝑡)) = (𝑡𝐴 ↦ (𝐹𝑡))
6362mptpreima 5772 . . . . . . . 8 ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))}
6460, 61, 633eqtr4g 2830 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
65 simpl 468 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
6665feqmptd 6391 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6766cnveqd 5436 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6867imaeq1d 5606 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6964, 68eqtr4d 2808 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
70 imaundi 5686 . . . . . 6 (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞)))
7169, 70syl6eq 2821 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
7271adantlr 686 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
73 mbfima 23618 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)-𝑥)) ∈ dom vol)
74 mbfima 23618 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
75 unmbl 23525 . . . . . . 7 (((𝐹 “ (-∞(,)-𝑥)) ∈ dom vol ∧ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7673, 74, 75syl2anc 565 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7776ancoms 455 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7877adantr 466 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7972, 78eqeltrd 2850 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
80 abslt 14262 . . . . . . . . . . 11 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
811, 80sylan 561 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
82 elioomnf 12474 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8320, 82syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8411biantrurd 516 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8584bicomd 213 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8683, 85sylan9bbr 494 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8735, 20jca 495 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (-𝑥 ∈ ℝ*𝑥 ∈ ℝ*))
881rexrd 10291 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ*)
89 elioo5 12436 . . . . . . . . . . . 12 ((-𝑥 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
90893expa 1111 . . . . . . . . . . 11 (((-𝑥 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9187, 88, 90syl2anr 576 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9281, 86, 913bitr4d 300 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9392an32s 623 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9493rabbidva 3338 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)})
9512mptpreima 5772 . . . . . . 7 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)}
9662mptpreima 5772 . . . . . . 7 ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)}
9794, 95, 963eqtr4g 2830 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9867imaeq1d 5606 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9997, 98eqtr4d 2808 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
10099adantlr 686 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
101 mbfima 23618 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
102101ancoms 455 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
103102adantr 466 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
104100, 103eqeltrd 2850 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
10514, 19, 79, 104ismbf2d 23628 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
10610, 105eqeltrd 2850 1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826   = wceq 1631  wcel 2145  {crab 3065  cun 3721   class class class wbr 4786  cmpt 4863  ccnv 5248  dom cdm 5249  cima 5252  ccom 5253  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  +∞cpnf 10273  -∞cmnf 10274  *cxr 10275   < clt 10276  cle 10277  -cneg 10469  (,)cioo 12380  abscabs 14182  volcvol 23451  MblFncmbf 23602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453  df-mbf 23607
This theorem is referenced by:  ftc1anclem2  33818  ftc1anclem4  33820  ftc1anclem5  33821  ftc1anclem6  33822  ftc1anclem8  33824
  Copyright terms: Public domain W3C validator