Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1olem Structured version   Visualization version   GIF version

Theorem onsucf1olem 43252
Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1olem ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1olem
StepHypRef Expression
1 onuni 7766 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
213ad2ant1 1133 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 ∈ On)
3 eloni 6344 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
4 unizlim 6459 . . . . . . . . . 10 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
5 oran 991 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
6 df-ne 2927 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
76anbi1i 624 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
85, 7xchbinxr 335 . . . . . . . . . 10 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
94, 8bitrdi 287 . . . . . . . . 9 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
103, 9syl 17 . . . . . . . 8 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
11 pm2.21 123 . . . . . . . 8 (¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴))
1210, 11biimtrdi 253 . . . . . . 7 (𝐴 ∈ On → (𝐴 = 𝐴 → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)))
1312com23 86 . . . . . 6 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴)))
14133impib 1116 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
15 idd 24 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = suc 𝐴𝐴 = suc 𝐴))
16 onuniorsuc 7814 . . . . . 6 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
17163ad2ant1 1133 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
1814, 15, 17mpjaod 860 . . . 4 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)
192, 18jca 511 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴))
20 eleq1 2817 . . . 4 (𝑏 = 𝐴 → (𝑏 ∈ On ↔ 𝐴 ∈ On))
21 suceq 6401 . . . . 5 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
2221eqeq2d 2741 . . . 4 (𝑏 = 𝐴 → (𝐴 = suc 𝑏𝐴 = suc 𝐴))
2320, 22anbi12d 632 . . 3 (𝑏 = 𝐴 → ((𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴)))
242, 19, 23spcedv 3567 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
25 onsucf1lem 43251 . . 3 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
26253ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
27 df-eu 2563 . . 3 (∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
28 df-reu 3357 . . 3 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
29 df-rmo 3356 . . . 4 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
3029anbi2i 623 . . 3 ((∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
3127, 28, 303bitr4i 303 . 2 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏))
3224, 26, 31sylanbrc 583 1 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2532  ∃!weu 2562  wne 2926  ∃!wreu 3354  ∃*wrmo 3355  c0 4298   cuni 4873  Ord word 6333  Oncon0 6334  Lim wlim 6335  suc csuc 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator