Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1olem Structured version   Visualization version   GIF version

Theorem onsucf1olem 43245
Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1olem ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1olem
StepHypRef Expression
1 onuni 7790 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
213ad2ant1 1133 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 ∈ On)
3 eloni 6373 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
4 unizlim 6487 . . . . . . . . . 10 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
5 oran 991 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
6 df-ne 2932 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
76anbi1i 624 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
85, 7xchbinxr 335 . . . . . . . . . 10 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
94, 8bitrdi 287 . . . . . . . . 9 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
103, 9syl 17 . . . . . . . 8 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
11 pm2.21 123 . . . . . . . 8 (¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴))
1210, 11biimtrdi 253 . . . . . . 7 (𝐴 ∈ On → (𝐴 = 𝐴 → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)))
1312com23 86 . . . . . 6 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴)))
14133impib 1116 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
15 idd 24 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = suc 𝐴𝐴 = suc 𝐴))
16 onuniorsuc 7839 . . . . . 6 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
17163ad2ant1 1133 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
1814, 15, 17mpjaod 860 . . . 4 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)
192, 18jca 511 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴))
20 eleq1 2821 . . . 4 (𝑏 = 𝐴 → (𝑏 ∈ On ↔ 𝐴 ∈ On))
21 suceq 6430 . . . . 5 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
2221eqeq2d 2745 . . . 4 (𝑏 = 𝐴 → (𝐴 = suc 𝑏𝐴 = suc 𝐴))
2320, 22anbi12d 632 . . 3 (𝑏 = 𝐴 → ((𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴)))
242, 19, 23spcedv 3581 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
25 onsucf1lem 43244 . . 3 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
26253ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
27 df-eu 2567 . . 3 (∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
28 df-reu 3364 . . 3 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
29 df-rmo 3363 . . . 4 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
3029anbi2i 623 . . 3 ((∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
3127, 28, 303bitr4i 303 . 2 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏))
3224, 26, 31sylanbrc 583 1 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2536  ∃!weu 2566  wne 2931  ∃!wreu 3361  ∃*wrmo 3362  c0 4313   cuni 4887  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator