Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1olem Structured version   Visualization version   GIF version

Theorem onsucf1olem 42509
Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
onsucf1olem ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Distinct variable group:   𝐴,𝑏

Proof of Theorem onsucf1olem
StepHypRef Expression
1 onuni 7769 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
213ad2ant1 1130 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 ∈ On)
3 eloni 6364 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
4 unizlim 6477 . . . . . . . . . 10 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
5 oran 986 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
6 df-ne 2933 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
76anbi1i 623 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴))
85, 7xchbinxr 335 . . . . . . . . . 10 ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
94, 8bitrdi 287 . . . . . . . . 9 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
103, 9syl 17 . . . . . . . 8 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)))
11 pm2.21 123 . . . . . . . 8 (¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴))
1210, 11syl6bi 253 . . . . . . 7 (𝐴 ∈ On → (𝐴 = 𝐴 → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)))
1312com23 86 . . . . . 6 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴)))
14133impib 1113 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
15 idd 24 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = suc 𝐴𝐴 = suc 𝐴))
16 onuniorsuc 7818 . . . . . 6 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
17163ad2ant1 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
1814, 15, 17mpjaod 857 . . . 4 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → 𝐴 = suc 𝐴)
192, 18jca 511 . . 3 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴))
20 eleq1 2813 . . . 4 (𝑏 = 𝐴 → (𝑏 ∈ On ↔ 𝐴 ∈ On))
21 suceq 6420 . . . . 5 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
2221eqeq2d 2735 . . . 4 (𝑏 = 𝐴 → (𝐴 = suc 𝑏𝐴 = suc 𝐴))
2320, 22anbi12d 630 . . 3 (𝑏 = 𝐴 → ((𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴)))
242, 19, 23spcedv 3580 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
25 onsucf1lem 42508 . . 3 (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
26253ad2ant1 1130 . 2 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃*𝑏 ∈ On 𝐴 = suc 𝑏)
27 df-eu 2555 . . 3 (∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
28 df-reu 3369 . . 3 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
29 df-rmo 3368 . . . 4 (∃*𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))
3029anbi2i 622 . . 3 ((∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)))
3127, 28, 303bitr4i 303 . 2 (∃!𝑏 ∈ On 𝐴 = suc 𝑏 ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏))
3224, 26, 31sylanbrc 582 1 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wex 1773  wcel 2098  ∃*wmo 2524  ∃!weu 2554  wne 2932  ∃!wreu 3366  ∃*wrmo 3367  c0 4314   cuni 4899  Ord word 6353  Oncon0 6354  Lim wlim 6355  suc csuc 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator