Proof of Theorem onsucf1olem
| Step | Hyp | Ref
| Expression |
| 1 | | onuni 7790 |
. . . 4
⊢ (𝐴 ∈ On → ∪ 𝐴
∈ On) |
| 2 | 1 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → ∪ 𝐴
∈ On) |
| 3 | | eloni 6373 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 4 | | unizlim 6487 |
. . . . . . . . . 10
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
| 5 | | oran 991 |
. . . . . . . . . . 11
⊢ ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴)) |
| 6 | | df-ne 2932 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
| 7 | 6 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴)) |
| 8 | 5, 7 | xchbinxr 335 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∨ Lim 𝐴) ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim
𝐴)) |
| 9 | 4, 8 | bitrdi 287 |
. . . . . . . . 9
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))) |
| 10 | 3, 9 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (𝐴 = ∪
𝐴 ↔ ¬ (𝐴 ≠ ∅ ∧ ¬ Lim
𝐴))) |
| 11 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
(𝐴 ≠ ∅ ∧ ¬
Lim 𝐴) → ((𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → 𝐴 = suc ∪ 𝐴)) |
| 12 | 10, 11 | biimtrdi 253 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 = ∪
𝐴 → ((𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → 𝐴 = suc ∪ 𝐴))) |
| 13 | 12 | com23 86 |
. . . . . 6
⊢ (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → (𝐴 = ∪
𝐴 → 𝐴 = suc ∪ 𝐴))) |
| 14 | 13 | 3impib 1116 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → (𝐴 = ∪
𝐴 → 𝐴 = suc ∪ 𝐴)) |
| 15 | | idd 24 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → (𝐴 = suc ∪ 𝐴
→ 𝐴 = suc ∪ 𝐴)) |
| 16 | | onuniorsuc 7839 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 = ∪
𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| 17 | 16 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → (𝐴 = ∪
𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| 18 | 14, 15, 17 | mpjaod 860 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → 𝐴 = suc ∪ 𝐴) |
| 19 | 2, 18 | jca 511 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → (∪ 𝐴
∈ On ∧ 𝐴 = suc
∪ 𝐴)) |
| 20 | | eleq1 2821 |
. . . 4
⊢ (𝑏 = ∪
𝐴 → (𝑏 ∈ On ↔ ∪ 𝐴
∈ On)) |
| 21 | | suceq 6430 |
. . . . 5
⊢ (𝑏 = ∪
𝐴 → suc 𝑏 = suc ∪ 𝐴) |
| 22 | 21 | eqeq2d 2745 |
. . . 4
⊢ (𝑏 = ∪
𝐴 → (𝐴 = suc 𝑏 ↔ 𝐴 = suc ∪ 𝐴)) |
| 23 | 20, 22 | anbi12d 632 |
. . 3
⊢ (𝑏 = ∪
𝐴 → ((𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ (∪ 𝐴 ∈ On ∧ 𝐴 = suc ∪ 𝐴))) |
| 24 | 2, 19, 23 | spcedv 3581 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → ∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)) |
| 25 | | onsucf1lem 43244 |
. . 3
⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
| 26 | 25 | 3ad2ant1 1133 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) |
| 27 | | df-eu 2567 |
. . 3
⊢
(∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))) |
| 28 | | df-reu 3364 |
. . 3
⊢
(∃!𝑏 ∈ On
𝐴 = suc 𝑏 ↔ ∃!𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)) |
| 29 | | df-rmo 3363 |
. . . 4
⊢
(∃*𝑏 ∈ On
𝐴 = suc 𝑏 ↔ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏)) |
| 30 | 29 | anbi2i 623 |
. . 3
⊢
((∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏))) |
| 31 | 27, 28, 30 | 3bitr4i 303 |
. 2
⊢
(∃!𝑏 ∈ On
𝐴 = suc 𝑏 ↔ (∃𝑏(𝑏 ∈ On ∧ 𝐴 = suc 𝑏) ∧ ∃*𝑏 ∈ On 𝐴 = suc 𝑏)) |
| 32 | 24, 26, 31 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim
𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏) |