MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem Structured version   Visualization version   GIF version

Theorem opphllem 28669
Description: Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 28670 and later for opphl 28688. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
opphllem.1 (𝜑𝑅𝑃)
opphllem.2 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
opphllem.3 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
Assertion
Ref Expression
opphllem (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem opphllem
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
2 colperpex.d . . . 4 = (dist‘𝐺)
3 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
5 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐺 ∈ TarskiG)
8 eqid 2730 . . . 4 (𝑆𝑥) = (𝑆𝑥)
9 mideu.2 . . . . 5 (𝜑𝐵𝑃)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝑃)
11 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1211adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑃)
13 mideu.1 . . . . 5 (𝜑𝐴𝑃)
1413adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝑃)
15 opphllem.1 . . . . 5 (𝜑𝑅𝑃)
1615adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑅𝑃)
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑃)
18 mideulem.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
1918necomd 2981 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
2019neneqd 2931 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐵 = 𝐴)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴)
22 mideulem.6 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
234, 6, 22perpln2 28645 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿)
241, 3, 4, 6, 13, 11, 23tglnne 28562 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
2524necomd 2981 . . . . . . . . . . . . 13 (𝜑𝑂𝐴)
2625neneqd 2931 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑂 = 𝐴)
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴)
2821, 27jca 511 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
296adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG)
309adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵𝑃)
3113adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴𝑃)
3211adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂𝑃)
331, 3, 4, 6, 9, 13, 19tglinerflx2 28568 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (𝐵𝐿𝐴))
341, 3, 4, 6, 13, 9, 18tglinecom 28569 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
3534, 22eqbrtrrd 5134 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂))
361, 2, 3, 4, 6, 9, 13, 33, 11, 35perprag 28660 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
3736adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
38 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴))
3938orcd 873 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
401, 2, 3, 4, 5, 29, 30, 31, 32, 37, 39ragflat3 28640 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴𝑂 = 𝐴))
41 oran 991 . . . . . . . . . . 11 ((𝐵 = 𝐴𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4240, 41sylib 218 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4328, 42pm2.65da 816 . . . . . . . . 9 (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4534adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
4644, 45neleqtrrd 2852 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
4718adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝐵)
4847neneqd 2931 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝐴 = 𝐵)
4946, 48jca 511 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
50 pm4.56 990 . . . . . 6 ((¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5149, 50sylib 218 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
521, 4, 3, 7, 14, 10, 12, 51ncolrot2 28497 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝐵 ∈ (𝑂𝐿𝐴) ∨ 𝑂 = 𝐴))
53 simprrr 781 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑅𝐼𝑂))
541, 2, 3, 7, 16, 17, 12, 53tgbtwncom 28422 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑂𝐼𝑅))
55 mideulem.4 . . . . . . . 8 (𝜑𝑇𝑃)
5655adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇𝑃)
57 mideulem.7 . . . . . . . 8 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
5857adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇 ∈ (𝐴𝐿𝐵))
59 simprrl 780 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑇𝐼𝐵))
601, 3, 4, 7, 56, 14, 10, 17, 58, 59coltr3 28582 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐿𝐵))
6143, 34neleqtrrd 2852 . . . . . . 7 (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
6261adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
63 nelne2 3024 . . . . . 6 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑥𝑂)
6460, 62, 63syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑂)
651, 2, 3, 7, 12, 17, 16, 54, 64tgbtwnne 28424 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑅)
661, 2, 3, 4, 5, 6, 9, 13, 11israg 28631 . . . . . . . 8 (𝜑 → (⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂))))
6736, 66mpbid 232 . . . . . . 7 (𝜑 → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
6867ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
696ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐺 ∈ TarskiG)
70 eqid 2730 . . . . . . . . 9 (𝑆𝐴) = (𝑆𝐴)
711, 2, 3, 4, 5, 7, 14, 70, 12mircl 28595 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7271ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7313ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴𝑃)
7411ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑂𝑃)
7515ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅𝑃)
769ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝑃)
77 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑠𝑃)
781, 2, 3, 4, 5, 69, 73, 70, 74mirbtwn 28592 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑂))
79 eqid 2730 . . . . . . . . 9 (𝑆𝐵) = (𝑆𝐵)
801, 2, 3, 4, 5, 69, 76, 79, 77mirbtwn 28592 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (((𝑆𝐵)‘𝑠)𝐼𝑠))
81 simpr 484 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝑚)‘𝑠))
8269ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐺 ∈ TarskiG)
8373ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝑃)
8476ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵𝑃)
8547ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝐵)
86 mideulem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑄𝑃)
8786ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑄𝑃)
8874ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑂𝑃)
8956ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇𝑃)
90 mideulem.5 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9190ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9222ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
9358ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝐴𝐿𝐵))
94 mideulem.8 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
9594ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝑄𝐼𝑂))
9675ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅𝑃)
97 opphllem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
9897ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 ∈ (𝐵𝐼𝑄))
99 opphllem.3 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
10099ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴 𝑂) = (𝐵 𝑅))
10117ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥𝑃)
102101ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥𝑃)
103 simp-5r 785 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂))))
104103simprd 495 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
105104simpld 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑇𝐼𝐵))
106104simprd 495 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑅𝐼𝑂))
10777ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑠𝑃)
108 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
109108simpld 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
110 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑠) = (𝑥 𝑅))
111110ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 𝑠) = (𝑥 𝑅))
112 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚𝑃)
1131, 2, 3, 4, 82, 5, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 102, 105, 106, 107, 109, 111, 112, 81mideulem2 28668 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵 = 𝑚)
114113eqcomd 2736 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚 = 𝐵)
115114fveq2d 6865 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑆𝑚) = (𝑆𝐵))
116115fveq1d 6863 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → ((𝑆𝑚)‘𝑠) = ((𝑆𝐵)‘𝑠))
11781, 116eqtrd 2765 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝐵)‘𝑠))
118 eqid 2730 . . . . . . . . . . 11 (𝑆𝑚) = (𝑆𝑚)
1191, 2, 3, 4, 5, 69, 118, 77, 75, 101, 110midexlem 28626 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ∃𝑚𝑃 𝑅 = ((𝑆𝑚)‘𝑠))
120117, 119r19.29a 3142 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅 = ((𝑆𝐵)‘𝑠))
121120oveq1d 7405 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅𝐼𝑠) = (((𝑆𝐵)‘𝑠)𝐼𝑠))
12280, 121eleqtrrd 2832 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (𝑅𝐼𝑠))
1231, 2, 3, 4, 5, 69, 73, 70, 74mircgr 28591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐴 𝑂))
12499ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑅))
125123, 124eqtrd 2765 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐵 𝑅))
1261, 2, 3, 69, 73, 72, 76, 75, 125tgcgrcomlr 28414 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝐴) = (𝑅 𝐵))
127120oveq2d 7406 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑅) = (𝐵 ((𝑆𝐵)‘𝑠)))
1281, 2, 3, 4, 5, 69, 76, 79, 77mircgr 28591 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ((𝑆𝐵)‘𝑠)) = (𝐵 𝑠))
129124, 127, 1283eqtrd 2769 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑠))
1301, 2, 3, 69, 72, 73, 74, 75, 76, 77, 78, 122, 126, 129tgcgrextend 28419 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑂) = (𝑅 𝑠))
1311, 2, 3, 69, 72, 75axtgcgrrflx 28396 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑅) = (𝑅 ((𝑆𝐴)‘𝑂)))
1321, 2, 3, 69, 74, 75axtgcgrrflx 28396 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑅 𝑂))
13353ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑅𝐼𝑂))
134 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
1351, 2, 3, 69, 72, 101, 77, 134tgbtwncom 28422 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑠𝐼((𝑆𝐴)‘𝑂)))
1361, 2, 3, 69, 101, 77, 101, 75, 110tgcgrcomlr 28414 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑠 𝑥) = (𝑅 𝑥))
137136eqcomd 2736 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑥) = (𝑠 𝑥))
13836ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
13947necomd 2981 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝐴)
140139ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝐴)
14160ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝐴𝐿𝐵))
142141orcd 873 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1431, 4, 3, 69, 73, 76, 101, 142colcom 28492 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1441, 4, 3, 69, 76, 73, 101, 143colrot1 28493 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
1451, 2, 3, 4, 5, 69, 76, 73, 74, 101, 138, 140, 144ragcol 28633 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺))
1461, 2, 3, 4, 5, 69, 101, 73, 74israg 28631 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂))))
147145, 146mpbid 232 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂)))
1481, 2, 3, 69, 75, 101, 74, 77, 101, 72, 133, 135, 137, 147tgcgrextend 28419 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑂) = (𝑠 ((𝑆𝐴)‘𝑂)))
149132, 148eqtrd 2765 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑠 ((𝑆𝐴)‘𝑂)))
1501, 2, 3, 69, 72, 73, 74, 75, 75, 76, 77, 72, 78, 122, 130, 129, 131, 149tgifscgr 28442 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑅) = (𝐵 ((𝑆𝐴)‘𝑂)))
15168, 150eqtr4d 2768 . . . . 5 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐴 𝑅))
1521, 2, 3, 7, 71, 17, 17, 16axtgsegcon 28398 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ∃𝑠𝑃 (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
153151, 152r19.29a 3142 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 𝑂) = (𝐴 𝑅))
15499adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝑂) = (𝐵 𝑅))
1551, 2, 3, 7, 14, 12, 10, 16, 154tgcgrcomlr 28414 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑂 𝐴) = (𝑅 𝐵))
156143, 152r19.29a 3142 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1571, 4, 3, 7, 12, 16, 17, 54btwncolg1 28489 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝑂𝐿𝑅) ∨ 𝑂 = 𝑅))
1581, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 17, 52, 65, 153, 155, 156, 157symquadlem 28623 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
1591, 2, 3, 4, 5, 7, 17, 8, 14mirbtwn 28592 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (((𝑆𝑥)‘𝐴)𝐼𝐴))
160158oveq1d 7405 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵𝐼𝐴) = (((𝑆𝑥)‘𝐴)𝐼𝐴))
161159, 160eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐵𝐼𝐴))
1621, 2, 3, 7, 10, 17, 14, 161tgbtwncom 28422 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐼𝐵))
1631, 2, 3, 7, 14, 10axtgcgrrflx 28396 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝐵) = (𝐵 𝐴))
164158oveq2d 7406 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 ((𝑆𝑥)‘𝐴)))
1651, 2, 3, 4, 5, 7, 17, 8, 14mircgr 28591 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ((𝑆𝑥)‘𝐴)) = (𝑥 𝐴))
166164, 165eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 𝐴))
1671, 2, 3, 7, 14, 17, 10, 12, 10, 17, 14, 16, 162, 161, 163, 166, 154, 153tgifscgr 28442 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝑂) = (𝑥 𝑅))
1681, 2, 3, 4, 5, 7, 17, 8, 16, 12, 167, 54ismir 28593 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 = ((𝑆𝑥)‘𝑅))
169158, 168jca 511 . 2 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
1701, 2, 3, 6, 86, 55, 11, 94tgbtwncom 28422 . . 3 (𝜑𝑇 ∈ (𝑂𝐼𝑄))
1711, 2, 3, 6, 11, 9, 86, 55, 15, 170, 97axtgpasch 28401 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
172169, 171reximddv 3150 1 (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368  pInvGcmir 28586  ∟Gcrag 28627  ⟂Gcperpg 28629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-mir 28587  df-rag 28628  df-perpg 28630
This theorem is referenced by:  mideulem  28670  opphllem3  28683
  Copyright terms: Public domain W3C validator