| Step | Hyp | Ref
| Expression |
| 1 | | colperpex.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | colperpex.d |
. . . 4
⊢ − =
(dist‘𝐺) |
| 3 | | colperpex.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | colperpex.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
| 5 | | mideu.s |
. . . 4
⊢ 𝑆 = (pInvG‘𝐺) |
| 6 | | colperpex.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐺 ∈ TarskiG) |
| 8 | | eqid 2737 |
. . . 4
⊢ (𝑆‘𝑥) = (𝑆‘𝑥) |
| 9 | | mideu.2 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 ∈ 𝑃) |
| 11 | | mideulem.3 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ 𝑃) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 ∈ 𝑃) |
| 13 | | mideu.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 14 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴 ∈ 𝑃) |
| 15 | | opphllem.1 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑅 ∈ 𝑃) |
| 17 | | simprl 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ 𝑃) |
| 18 | | mideulem.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 19 | 18 | necomd 2996 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 20 | 19 | neneqd 2945 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝐵 = 𝐴) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴) |
| 22 | | mideulem.6 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
| 23 | 4, 6, 22 | perpln2 28719 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿) |
| 24 | 1, 3, 4, 6, 13, 11, 23 | tglnne 28636 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ≠ 𝑂) |
| 25 | 24 | necomd 2996 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ≠ 𝐴) |
| 26 | 25 | neneqd 2945 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑂 = 𝐴) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴) |
| 28 | 21, 27 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
| 29 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG) |
| 30 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵 ∈ 𝑃) |
| 31 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴 ∈ 𝑃) |
| 32 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ 𝑃) |
| 33 | 1, 3, 4, 6, 9, 13,
19 | tglinerflx2 28642 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐴)) |
| 34 | 1, 3, 4, 6, 13, 9,
18 | tglinecom 28643 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
| 35 | 34, 22 | eqbrtrrd 5167 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
| 36 | 1, 2, 3, 4, 6, 9, 13, 33, 11, 35 | perprag 28734 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
| 38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴)) |
| 39 | 38 | orcd 874 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
| 40 | 1, 2, 3, 4, 5, 29,
30, 31, 32, 37, 39 | ragflat3 28714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴 ∨ 𝑂 = 𝐴)) |
| 41 | | oran 992 |
. . . . . . . . . . 11
⊢ ((𝐵 = 𝐴 ∨ 𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
| 42 | 40, 41 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
| 43 | 28, 42 | pm2.65da 817 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴)) |
| 44 | 43 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐵𝐿𝐴)) |
| 45 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
| 46 | 44, 45 | neleqtrrd 2864 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵)) |
| 47 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴 ≠ 𝐵) |
| 48 | 47 | neneqd 2945 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝐴 = 𝐵) |
| 49 | 46, 48 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵)) |
| 50 | | pm4.56 991 |
. . . . . 6
⊢ ((¬
𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 51 | 49, 50 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 52 | 1, 4, 3, 7, 14, 10, 12, 51 | ncolrot2 28571 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝐵 ∈ (𝑂𝐿𝐴) ∨ 𝑂 = 𝐴)) |
| 53 | | simprrr 782 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑅𝐼𝑂)) |
| 54 | 1, 2, 3, 7, 16, 17, 12, 53 | tgbtwncom 28496 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑂𝐼𝑅)) |
| 55 | | mideulem.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| 56 | 55 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇 ∈ 𝑃) |
| 57 | | mideulem.7 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) |
| 58 | 57 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇 ∈ (𝐴𝐿𝐵)) |
| 59 | | simprrl 781 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑇𝐼𝐵)) |
| 60 | 1, 3, 4, 7, 56, 14, 10, 17, 58, 59 | coltr3 28656 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐿𝐵)) |
| 61 | 43, 34 | neleqtrrd 2864 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵)) |
| 62 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵)) |
| 63 | | nelne2 3040 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑥 ≠ 𝑂) |
| 64 | 60, 62, 63 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ≠ 𝑂) |
| 65 | 1, 2, 3, 7, 12, 17, 16, 54, 64 | tgbtwnne 28498 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 ≠ 𝑅) |
| 66 | 1, 2, 3, 4, 5, 6, 9, 13, 11 | israg 28705 |
. . . . . . . 8
⊢ (𝜑 → (〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺) ↔ (𝐵 − 𝑂) = (𝐵 − ((𝑆‘𝐴)‘𝑂)))) |
| 67 | 36, 66 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝑂) = (𝐵 − ((𝑆‘𝐴)‘𝑂))) |
| 68 | 67 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐵 − 𝑂) = (𝐵 − ((𝑆‘𝐴)‘𝑂))) |
| 69 | 6 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐺 ∈ TarskiG) |
| 70 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑆‘𝐴) = (𝑆‘𝐴) |
| 71 | 1, 2, 3, 4, 5, 7, 14, 70, 12 | mircl 28669 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
| 72 | 71 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
| 73 | 13 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐴 ∈ 𝑃) |
| 74 | 11 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑂 ∈ 𝑃) |
| 75 | 15 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑅 ∈ 𝑃) |
| 76 | 9 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐵 ∈ 𝑃) |
| 77 | | simplr 769 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑠 ∈ 𝑃) |
| 78 | 1, 2, 3, 4, 5, 69,
73, 70, 74 | mirbtwn 28666 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐴 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑂)) |
| 79 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑆‘𝐵) = (𝑆‘𝐵) |
| 80 | 1, 2, 3, 4, 5, 69,
76, 79, 77 | mirbtwn 28666 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐵 ∈ (((𝑆‘𝐵)‘𝑠)𝐼𝑠)) |
| 81 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑅 = ((𝑆‘𝑚)‘𝑠)) |
| 82 | 69 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝐺 ∈ TarskiG) |
| 83 | 73 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝐴 ∈ 𝑃) |
| 84 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝐵 ∈ 𝑃) |
| 85 | 47 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝐴 ≠ 𝐵) |
| 86 | | mideulem.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| 87 | 86 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑄 ∈ 𝑃) |
| 88 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑂 ∈ 𝑃) |
| 89 | 56 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑇 ∈ 𝑃) |
| 90 | | mideulem.5 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
| 91 | 90 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
| 92 | 22 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
| 93 | 58 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑇 ∈ (𝐴𝐿𝐵)) |
| 94 | | mideulem.8 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) |
| 95 | 94 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑇 ∈ (𝑄𝐼𝑂)) |
| 96 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑅 ∈ 𝑃) |
| 97 | | opphllem.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) |
| 98 | 97 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑅 ∈ (𝐵𝐼𝑄)) |
| 99 | | opphllem.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
| 100 | 99 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
| 101 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑥 ∈ 𝑃) |
| 102 | 101 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑥 ∈ 𝑃) |
| 103 | | simp-5r 786 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) |
| 104 | 103 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂))) |
| 105 | 104 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑥 ∈ (𝑇𝐼𝐵)) |
| 106 | 104 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑥 ∈ (𝑅𝐼𝑂)) |
| 107 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑠 ∈ 𝑃) |
| 108 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) |
| 109 | 108 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠)) |
| 110 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑥 − 𝑠) = (𝑥 − 𝑅)) |
| 111 | 110 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝑥 − 𝑠) = (𝑥 − 𝑅)) |
| 112 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑚 ∈ 𝑃) |
| 113 | 1, 2, 3, 4, 82, 5,
83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 102, 105, 106, 107, 109, 111, 112, 81 | mideulem2 28742 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝐵 = 𝑚) |
| 114 | 113 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑚 = 𝐵) |
| 115 | 114 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → (𝑆‘𝑚) = (𝑆‘𝐵)) |
| 116 | 115 | fveq1d 6908 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → ((𝑆‘𝑚)‘𝑠) = ((𝑆‘𝐵)‘𝑠)) |
| 117 | 81, 116 | eqtrd 2777 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) ∧ 𝑚 ∈ 𝑃) ∧ 𝑅 = ((𝑆‘𝑚)‘𝑠)) → 𝑅 = ((𝑆‘𝐵)‘𝑠)) |
| 118 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑆‘𝑚) = (𝑆‘𝑚) |
| 119 | 1, 2, 3, 4, 5, 69,
118, 77, 75, 101, 110 | midexlem 28700 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → ∃𝑚 ∈ 𝑃 𝑅 = ((𝑆‘𝑚)‘𝑠)) |
| 120 | 117, 119 | r19.29a 3162 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑅 = ((𝑆‘𝐵)‘𝑠)) |
| 121 | 120 | oveq1d 7446 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑅𝐼𝑠) = (((𝑆‘𝐵)‘𝑠)𝐼𝑠)) |
| 122 | 80, 121 | eleqtrrd 2844 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐵 ∈ (𝑅𝐼𝑠)) |
| 123 | 1, 2, 3, 4, 5, 69,
73, 70, 74 | mircgr 28665 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐴 − ((𝑆‘𝐴)‘𝑂)) = (𝐴 − 𝑂)) |
| 124 | 99 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
| 125 | 123, 124 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐴 − ((𝑆‘𝐴)‘𝑂)) = (𝐵 − 𝑅)) |
| 126 | 1, 2, 3, 69, 73, 72, 76, 75, 125 | tgcgrcomlr 28488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (((𝑆‘𝐴)‘𝑂) − 𝐴) = (𝑅 − 𝐵)) |
| 127 | 120 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐵 − 𝑅) = (𝐵 − ((𝑆‘𝐵)‘𝑠))) |
| 128 | 1, 2, 3, 4, 5, 69,
76, 79, 77 | mircgr 28665 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐵 − ((𝑆‘𝐵)‘𝑠)) = (𝐵 − 𝑠)) |
| 129 | 124, 127,
128 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐴 − 𝑂) = (𝐵 − 𝑠)) |
| 130 | 1, 2, 3, 69, 72, 73, 74, 75, 76, 77, 78, 122, 126, 129 | tgcgrextend 28493 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (((𝑆‘𝐴)‘𝑂) − 𝑂) = (𝑅 − 𝑠)) |
| 131 | 1, 2, 3, 69, 72, 75 | axtgcgrrflx 28470 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (((𝑆‘𝐴)‘𝑂) − 𝑅) = (𝑅 − ((𝑆‘𝐴)‘𝑂))) |
| 132 | 1, 2, 3, 69, 74, 75 | axtgcgrrflx 28470 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑂 − 𝑅) = (𝑅 − 𝑂)) |
| 133 | 53 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑥 ∈ (𝑅𝐼𝑂)) |
| 134 | | simprl 771 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠)) |
| 135 | 1, 2, 3, 69, 72, 101, 77, 134 | tgbtwncom 28496 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑥 ∈ (𝑠𝐼((𝑆‘𝐴)‘𝑂))) |
| 136 | 1, 2, 3, 69, 101, 77, 101, 75, 110 | tgcgrcomlr 28488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑠 − 𝑥) = (𝑅 − 𝑥)) |
| 137 | 136 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑅 − 𝑥) = (𝑠 − 𝑥)) |
| 138 | 36 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
| 139 | 47 | necomd 2996 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 ≠ 𝐴) |
| 140 | 139 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝐵 ≠ 𝐴) |
| 141 | 60 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 𝑥 ∈ (𝐴𝐿𝐵)) |
| 142 | 141 | orcd 874 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 143 | 1, 4, 3, 69, 73, 76, 101, 142 | colcom 28566 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
| 144 | 1, 4, 3, 69, 76, 73, 101, 143 | colrot1 28567 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥)) |
| 145 | 1, 2, 3, 4, 5, 69,
76, 73, 74, 101, 138, 140, 144 | ragcol 28707 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → 〈“𝑥𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
| 146 | 1, 2, 3, 4, 5, 69,
101, 73, 74 | israg 28705 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (〈“𝑥𝐴𝑂”〉 ∈ (∟G‘𝐺) ↔ (𝑥 − 𝑂) = (𝑥 − ((𝑆‘𝐴)‘𝑂)))) |
| 147 | 145, 146 | mpbid 232 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑥 − 𝑂) = (𝑥 − ((𝑆‘𝐴)‘𝑂))) |
| 148 | 1, 2, 3, 69, 75, 101, 74, 77, 101, 72, 133, 135, 137, 147 | tgcgrextend 28493 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑅 − 𝑂) = (𝑠 − ((𝑆‘𝐴)‘𝑂))) |
| 149 | 132, 148 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝑂 − 𝑅) = (𝑠 − ((𝑆‘𝐴)‘𝑂))) |
| 150 | 1, 2, 3, 69, 72, 73, 74, 75, 75, 76, 77, 72, 78, 122, 130, 129, 131, 149 | tgifscgr 28516 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐴 − 𝑅) = (𝐵 − ((𝑆‘𝐴)‘𝑂))) |
| 151 | 68, 150 | eqtr4d 2780 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) → (𝐵 − 𝑂) = (𝐴 − 𝑅)) |
| 152 | 1, 2, 3, 7, 71, 17, 17, 16 | axtgsegcon 28472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ∃𝑠 ∈ 𝑃 (𝑥 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 − 𝑠) = (𝑥 − 𝑅))) |
| 153 | 151, 152 | r19.29a 3162 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 − 𝑂) = (𝐴 − 𝑅)) |
| 154 | 99 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
| 155 | 1, 2, 3, 7, 14, 12, 10, 16, 154 | tgcgrcomlr 28488 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑂 − 𝐴) = (𝑅 − 𝐵)) |
| 156 | 143, 152 | r19.29a 3162 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
| 157 | 1, 4, 3, 7, 12, 16, 17, 54 | btwncolg1 28563 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝑂𝐿𝑅) ∨ 𝑂 = 𝑅)) |
| 158 | 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 17, 52, 65, 153, 155, 156, 157 | symquadlem 28697 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
| 159 | 1, 2, 3, 4, 5, 7, 17, 8, 14 | mirbtwn 28666 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (((𝑆‘𝑥)‘𝐴)𝐼𝐴)) |
| 160 | 158 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵𝐼𝐴) = (((𝑆‘𝑥)‘𝐴)𝐼𝐴)) |
| 161 | 159, 160 | eleqtrrd 2844 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐵𝐼𝐴)) |
| 162 | 1, 2, 3, 7, 10, 17, 14, 161 | tgbtwncom 28496 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐼𝐵)) |
| 163 | 1, 2, 3, 7, 14, 10 | axtgcgrrflx 28470 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 164 | 158 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 − 𝐵) = (𝑥 − ((𝑆‘𝑥)‘𝐴))) |
| 165 | 1, 2, 3, 4, 5, 7, 17, 8, 14 | mircgr 28665 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 − ((𝑆‘𝑥)‘𝐴)) = (𝑥 − 𝐴)) |
| 166 | 164, 165 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 − 𝐵) = (𝑥 − 𝐴)) |
| 167 | 1, 2, 3, 7, 14, 17, 10, 12, 10, 17, 14, 16, 162, 161, 163, 166, 154, 153 | tgifscgr 28516 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 − 𝑂) = (𝑥 − 𝑅)) |
| 168 | 1, 2, 3, 4, 5, 7, 17, 8, 16, 12, 167, 54 | ismir 28667 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 = ((𝑆‘𝑥)‘𝑅)) |
| 169 | 158, 168 | jca 511 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑅))) |
| 170 | 1, 2, 3, 6, 86, 55, 11, 94 | tgbtwncom 28496 |
. . 3
⊢ (𝜑 → 𝑇 ∈ (𝑂𝐼𝑄)) |
| 171 | 1, 2, 3, 6, 11, 9,
86, 55, 15, 170, 97 | axtgpasch 28475 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂))) |
| 172 | 169, 171 | reximddv 3171 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑅))) |