MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem Structured version   Visualization version   GIF version

Theorem opphllem 28660
Description: Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 28661 and later for opphl 28679. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
opphllem.1 (𝜑𝑅𝑃)
opphllem.2 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
opphllem.3 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
Assertion
Ref Expression
opphllem (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem opphllem
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
2 colperpex.d . . . 4 = (dist‘𝐺)
3 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
5 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐺 ∈ TarskiG)
8 eqid 2735 . . . 4 (𝑆𝑥) = (𝑆𝑥)
9 mideu.2 . . . . 5 (𝜑𝐵𝑃)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝑃)
11 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1211adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑃)
13 mideu.1 . . . . 5 (𝜑𝐴𝑃)
1413adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝑃)
15 opphllem.1 . . . . 5 (𝜑𝑅𝑃)
1615adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑅𝑃)
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑃)
18 mideulem.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
1918necomd 2987 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
2019neneqd 2937 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐵 = 𝐴)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴)
22 mideulem.6 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
234, 6, 22perpln2 28636 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿)
241, 3, 4, 6, 13, 11, 23tglnne 28553 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
2524necomd 2987 . . . . . . . . . . . . 13 (𝜑𝑂𝐴)
2625neneqd 2937 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑂 = 𝐴)
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴)
2821, 27jca 511 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
296adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG)
309adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵𝑃)
3113adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴𝑃)
3211adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂𝑃)
331, 3, 4, 6, 9, 13, 19tglinerflx2 28559 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (𝐵𝐿𝐴))
341, 3, 4, 6, 13, 9, 18tglinecom 28560 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
3534, 22eqbrtrrd 5143 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂))
361, 2, 3, 4, 6, 9, 13, 33, 11, 35perprag 28651 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
3736adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
38 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴))
3938orcd 873 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
401, 2, 3, 4, 5, 29, 30, 31, 32, 37, 39ragflat3 28631 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴𝑂 = 𝐴))
41 oran 991 . . . . . . . . . . 11 ((𝐵 = 𝐴𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4240, 41sylib 218 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4328, 42pm2.65da 816 . . . . . . . . 9 (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4534adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
4644, 45neleqtrrd 2857 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
4718adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝐵)
4847neneqd 2937 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝐴 = 𝐵)
4946, 48jca 511 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
50 pm4.56 990 . . . . . 6 ((¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5149, 50sylib 218 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
521, 4, 3, 7, 14, 10, 12, 51ncolrot2 28488 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝐵 ∈ (𝑂𝐿𝐴) ∨ 𝑂 = 𝐴))
53 simprrr 781 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑅𝐼𝑂))
541, 2, 3, 7, 16, 17, 12, 53tgbtwncom 28413 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑂𝐼𝑅))
55 mideulem.4 . . . . . . . 8 (𝜑𝑇𝑃)
5655adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇𝑃)
57 mideulem.7 . . . . . . . 8 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
5857adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇 ∈ (𝐴𝐿𝐵))
59 simprrl 780 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑇𝐼𝐵))
601, 3, 4, 7, 56, 14, 10, 17, 58, 59coltr3 28573 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐿𝐵))
6143, 34neleqtrrd 2857 . . . . . . 7 (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
6261adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
63 nelne2 3030 . . . . . 6 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑥𝑂)
6460, 62, 63syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑂)
651, 2, 3, 7, 12, 17, 16, 54, 64tgbtwnne 28415 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑅)
661, 2, 3, 4, 5, 6, 9, 13, 11israg 28622 . . . . . . . 8 (𝜑 → (⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂))))
6736, 66mpbid 232 . . . . . . 7 (𝜑 → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
6867ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
696ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐺 ∈ TarskiG)
70 eqid 2735 . . . . . . . . 9 (𝑆𝐴) = (𝑆𝐴)
711, 2, 3, 4, 5, 7, 14, 70, 12mircl 28586 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7271ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7313ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴𝑃)
7411ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑂𝑃)
7515ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅𝑃)
769ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝑃)
77 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑠𝑃)
781, 2, 3, 4, 5, 69, 73, 70, 74mirbtwn 28583 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑂))
79 eqid 2735 . . . . . . . . 9 (𝑆𝐵) = (𝑆𝐵)
801, 2, 3, 4, 5, 69, 76, 79, 77mirbtwn 28583 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (((𝑆𝐵)‘𝑠)𝐼𝑠))
81 simpr 484 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝑚)‘𝑠))
8269ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐺 ∈ TarskiG)
8373ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝑃)
8476ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵𝑃)
8547ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝐵)
86 mideulem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑄𝑃)
8786ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑄𝑃)
8874ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑂𝑃)
8956ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇𝑃)
90 mideulem.5 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9190ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9222ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
9358ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝐴𝐿𝐵))
94 mideulem.8 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
9594ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝑄𝐼𝑂))
9675ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅𝑃)
97 opphllem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
9897ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 ∈ (𝐵𝐼𝑄))
99 opphllem.3 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
10099ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴 𝑂) = (𝐵 𝑅))
10117ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥𝑃)
102101ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥𝑃)
103 simp-5r 785 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂))))
104103simprd 495 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
105104simpld 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑇𝐼𝐵))
106104simprd 495 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑅𝐼𝑂))
10777ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑠𝑃)
108 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
109108simpld 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
110 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑠) = (𝑥 𝑅))
111110ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 𝑠) = (𝑥 𝑅))
112 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚𝑃)
1131, 2, 3, 4, 82, 5, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 102, 105, 106, 107, 109, 111, 112, 81mideulem2 28659 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵 = 𝑚)
114113eqcomd 2741 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚 = 𝐵)
115114fveq2d 6879 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑆𝑚) = (𝑆𝐵))
116115fveq1d 6877 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → ((𝑆𝑚)‘𝑠) = ((𝑆𝐵)‘𝑠))
11781, 116eqtrd 2770 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝐵)‘𝑠))
118 eqid 2735 . . . . . . . . . . 11 (𝑆𝑚) = (𝑆𝑚)
1191, 2, 3, 4, 5, 69, 118, 77, 75, 101, 110midexlem 28617 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ∃𝑚𝑃 𝑅 = ((𝑆𝑚)‘𝑠))
120117, 119r19.29a 3148 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅 = ((𝑆𝐵)‘𝑠))
121120oveq1d 7418 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅𝐼𝑠) = (((𝑆𝐵)‘𝑠)𝐼𝑠))
12280, 121eleqtrrd 2837 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (𝑅𝐼𝑠))
1231, 2, 3, 4, 5, 69, 73, 70, 74mircgr 28582 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐴 𝑂))
12499ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑅))
125123, 124eqtrd 2770 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐵 𝑅))
1261, 2, 3, 69, 73, 72, 76, 75, 125tgcgrcomlr 28405 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝐴) = (𝑅 𝐵))
127120oveq2d 7419 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑅) = (𝐵 ((𝑆𝐵)‘𝑠)))
1281, 2, 3, 4, 5, 69, 76, 79, 77mircgr 28582 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ((𝑆𝐵)‘𝑠)) = (𝐵 𝑠))
129124, 127, 1283eqtrd 2774 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑠))
1301, 2, 3, 69, 72, 73, 74, 75, 76, 77, 78, 122, 126, 129tgcgrextend 28410 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑂) = (𝑅 𝑠))
1311, 2, 3, 69, 72, 75axtgcgrrflx 28387 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑅) = (𝑅 ((𝑆𝐴)‘𝑂)))
1321, 2, 3, 69, 74, 75axtgcgrrflx 28387 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑅 𝑂))
13353ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑅𝐼𝑂))
134 simprl 770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
1351, 2, 3, 69, 72, 101, 77, 134tgbtwncom 28413 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑠𝐼((𝑆𝐴)‘𝑂)))
1361, 2, 3, 69, 101, 77, 101, 75, 110tgcgrcomlr 28405 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑠 𝑥) = (𝑅 𝑥))
137136eqcomd 2741 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑥) = (𝑠 𝑥))
13836ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
13947necomd 2987 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝐴)
140139ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝐴)
14160ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝐴𝐿𝐵))
142141orcd 873 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1431, 4, 3, 69, 73, 76, 101, 142colcom 28483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1441, 4, 3, 69, 76, 73, 101, 143colrot1 28484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
1451, 2, 3, 4, 5, 69, 76, 73, 74, 101, 138, 140, 144ragcol 28624 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺))
1461, 2, 3, 4, 5, 69, 101, 73, 74israg 28622 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂))))
147145, 146mpbid 232 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂)))
1481, 2, 3, 69, 75, 101, 74, 77, 101, 72, 133, 135, 137, 147tgcgrextend 28410 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑂) = (𝑠 ((𝑆𝐴)‘𝑂)))
149132, 148eqtrd 2770 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑠 ((𝑆𝐴)‘𝑂)))
1501, 2, 3, 69, 72, 73, 74, 75, 75, 76, 77, 72, 78, 122, 130, 129, 131, 149tgifscgr 28433 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑅) = (𝐵 ((𝑆𝐴)‘𝑂)))
15168, 150eqtr4d 2773 . . . . 5 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐴 𝑅))
1521, 2, 3, 7, 71, 17, 17, 16axtgsegcon 28389 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ∃𝑠𝑃 (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
153151, 152r19.29a 3148 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 𝑂) = (𝐴 𝑅))
15499adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝑂) = (𝐵 𝑅))
1551, 2, 3, 7, 14, 12, 10, 16, 154tgcgrcomlr 28405 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑂 𝐴) = (𝑅 𝐵))
156143, 152r19.29a 3148 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1571, 4, 3, 7, 12, 16, 17, 54btwncolg1 28480 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝑂𝐿𝑅) ∨ 𝑂 = 𝑅))
1581, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 17, 52, 65, 153, 155, 156, 157symquadlem 28614 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
1591, 2, 3, 4, 5, 7, 17, 8, 14mirbtwn 28583 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (((𝑆𝑥)‘𝐴)𝐼𝐴))
160158oveq1d 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵𝐼𝐴) = (((𝑆𝑥)‘𝐴)𝐼𝐴))
161159, 160eleqtrrd 2837 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐵𝐼𝐴))
1621, 2, 3, 7, 10, 17, 14, 161tgbtwncom 28413 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐼𝐵))
1631, 2, 3, 7, 14, 10axtgcgrrflx 28387 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝐵) = (𝐵 𝐴))
164158oveq2d 7419 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 ((𝑆𝑥)‘𝐴)))
1651, 2, 3, 4, 5, 7, 17, 8, 14mircgr 28582 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ((𝑆𝑥)‘𝐴)) = (𝑥 𝐴))
166164, 165eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 𝐴))
1671, 2, 3, 7, 14, 17, 10, 12, 10, 17, 14, 16, 162, 161, 163, 166, 154, 153tgifscgr 28433 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝑂) = (𝑥 𝑅))
1681, 2, 3, 4, 5, 7, 17, 8, 16, 12, 167, 54ismir 28584 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 = ((𝑆𝑥)‘𝑅))
169158, 168jca 511 . 2 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
1701, 2, 3, 6, 86, 55, 11, 94tgbtwncom 28413 . . 3 (𝜑𝑇 ∈ (𝑂𝐼𝑄))
1711, 2, 3, 6, 11, 9, 86, 55, 15, 170, 97axtgpasch 28392 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
172169, 171reximddv 3156 1 (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6530  (class class class)co 7403  ⟨“cs3 14859  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  Itvcitv 28358  LineGclng 28359  pInvGcmir 28577  ∟Gcrag 28618  ⟂Gcperpg 28620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-s3 14866  df-trkgc 28373  df-trkgb 28374  df-trkgcb 28375  df-trkg 28378  df-cgrg 28436  df-leg 28508  df-mir 28578  df-rag 28619  df-perpg 28621
This theorem is referenced by:  mideulem  28661  opphllem3  28674
  Copyright terms: Public domain W3C validator