MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem2 Structured version   Visualization version   GIF version

Theorem mideulem2 27974
Description: Lemma for opphllem 27975, which is itself used for mideu 27978. (Contributed by Thierry Arnoux, 19-Feb-2020.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Baseβ€˜πΊ)
colperpex.d βˆ’ = (distβ€˜πΊ)
colperpex.i 𝐼 = (Itvβ€˜πΊ)
colperpex.l 𝐿 = (LineGβ€˜πΊ)
colperpex.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvGβ€˜πΊ)
mideu.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
mideu.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
mideulem.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
mideulem.2 (πœ‘ β†’ 𝑄 ∈ 𝑃)
mideulem.3 (πœ‘ β†’ 𝑂 ∈ 𝑃)
mideulem.4 (πœ‘ β†’ 𝑇 ∈ 𝑃)
mideulem.5 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝑄𝐿𝐡))
mideulem.6 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝑂))
mideulem.7 (πœ‘ β†’ 𝑇 ∈ (𝐴𝐿𝐡))
mideulem.8 (πœ‘ β†’ 𝑇 ∈ (𝑄𝐼𝑂))
opphllem.1 (πœ‘ β†’ 𝑅 ∈ 𝑃)
opphllem.2 (πœ‘ β†’ 𝑅 ∈ (𝐡𝐼𝑄))
opphllem.3 (πœ‘ β†’ (𝐴 βˆ’ 𝑂) = (𝐡 βˆ’ 𝑅))
mideulem2.1 (πœ‘ β†’ 𝑋 ∈ 𝑃)
mideulem2.2 (πœ‘ β†’ 𝑋 ∈ (𝑇𝐼𝐡))
mideulem2.3 (πœ‘ β†’ 𝑋 ∈ (𝑅𝐼𝑂))
mideulem2.4 (πœ‘ β†’ 𝑍 ∈ 𝑃)
mideulem2.5 (πœ‘ β†’ 𝑋 ∈ (((π‘†β€˜π΄)β€˜π‘‚)𝐼𝑍))
mideulem2.6 (πœ‘ β†’ (𝑋 βˆ’ 𝑍) = (𝑋 βˆ’ 𝑅))
mideulem2.7 (πœ‘ β†’ 𝑀 ∈ 𝑃)
mideulem2.8 (πœ‘ β†’ 𝑅 = ((π‘†β€˜π‘€)β€˜π‘))
Assertion
Ref Expression
mideulem2 (πœ‘ β†’ 𝐡 = 𝑀)

Proof of Theorem mideulem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . 3 (𝑦 = 𝐡 β†’ (𝑅𝐿𝑦) = (𝑅𝐿𝐡))
21breq1d 5157 . 2 (𝑦 = 𝐡 β†’ ((𝑅𝐿𝑦)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡) ↔ (𝑅𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡)))
3 oveq2 7413 . . 3 (𝑦 = 𝑀 β†’ (𝑅𝐿𝑦) = (𝑅𝐿𝑀))
43breq1d 5157 . 2 (𝑦 = 𝑀 β†’ ((𝑅𝐿𝑦)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡) ↔ (𝑅𝐿𝑀)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡)))
5 colperpex.p . . 3 𝑃 = (Baseβ€˜πΊ)
6 colperpex.d . . 3 βˆ’ = (distβ€˜πΊ)
7 colperpex.i . . 3 𝐼 = (Itvβ€˜πΊ)
8 colperpex.l . . 3 𝐿 = (LineGβ€˜πΊ)
9 colperpex.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
10 mideu.1 . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
11 mideu.2 . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
12 mideulem.1 . . . 4 (πœ‘ β†’ 𝐴 β‰  𝐡)
135, 7, 8, 9, 10, 11, 12tgelrnln 27870 . . 3 (πœ‘ β†’ (𝐴𝐿𝐡) ∈ ran 𝐿)
14 opphllem.1 . . 3 (πœ‘ β†’ 𝑅 ∈ 𝑃)
1512adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝐴 β‰  𝐡)
1615neneqd 2945 . . . . 5 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ Β¬ 𝐴 = 𝐡)
17 mideulem.3 . . . . . . . . 9 (πœ‘ β†’ 𝑂 ∈ 𝑃)
18 opphllem.3 . . . . . . . . 9 (πœ‘ β†’ (𝐴 βˆ’ 𝑂) = (𝐡 βˆ’ 𝑅))
19 mideulem.6 . . . . . . . . . . 11 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝑂))
208, 9, 19perpln2 27951 . . . . . . . . . 10 (πœ‘ β†’ (𝐴𝐿𝑂) ∈ ran 𝐿)
215, 7, 8, 9, 10, 17, 20tglnne 27868 . . . . . . . . 9 (πœ‘ β†’ 𝐴 β‰  𝑂)
225, 6, 7, 9, 10, 17, 11, 14, 18, 21tgcgrneq 27723 . . . . . . . 8 (πœ‘ β†’ 𝐡 β‰  𝑅)
2322adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝐡 β‰  𝑅)
2423necomd 2996 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝑅 β‰  𝐡)
2524neneqd 2945 . . . . 5 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ Β¬ 𝑅 = 𝐡)
2616, 25jca 512 . . . 4 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ (Β¬ 𝐴 = 𝐡 ∧ Β¬ 𝑅 = 𝐡))
27 mideu.s . . . . . 6 𝑆 = (pInvGβ€˜πΊ)
289adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝐺 ∈ TarskiG)
2910adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝐴 ∈ 𝑃)
3011adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝐡 ∈ 𝑃)
3114adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝑅 ∈ 𝑃)
32 mideulem.2 . . . . . . . . 9 (πœ‘ β†’ 𝑄 ∈ 𝑃)
33 mideulem.5 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝑄𝐿𝐡))
348, 9, 33perpln2 27951 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑄𝐿𝐡) ∈ ran 𝐿)
355, 7, 8, 9, 32, 11, 34tglnne 27868 . . . . . . . . . . 11 (πœ‘ β†’ 𝑄 β‰  𝐡)
365, 7, 8, 9, 32, 11, 35tglinerflx2 27874 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ (𝑄𝐿𝐡))
375, 6, 7, 8, 9, 13, 34, 33perpcom 27953 . . . . . . . . . . 11 (πœ‘ β†’ (𝑄𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
385, 7, 8, 9, 10, 11, 12tglinecom 27875 . . . . . . . . . . 11 (πœ‘ β†’ (𝐴𝐿𝐡) = (𝐡𝐿𝐴))
3937, 38breqtrd 5173 . . . . . . . . . 10 (πœ‘ β†’ (𝑄𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐡𝐿𝐴))
405, 6, 7, 8, 9, 32, 11, 36, 10, 39perprag 27966 . . . . . . . . 9 (πœ‘ β†’ βŸ¨β€œπ‘„π΅π΄β€βŸ© ∈ (∟Gβ€˜πΊ))
41 opphllem.2 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ (𝐡𝐼𝑄))
425, 8, 7, 9, 11, 14, 32, 41btwncolg3 27797 . . . . . . . . 9 (πœ‘ β†’ (𝑄 ∈ (𝐡𝐿𝑅) ∨ 𝐡 = 𝑅))
435, 6, 7, 8, 27, 9, 32, 11, 10, 14, 40, 35, 42ragcol 27939 . . . . . . . 8 (πœ‘ β†’ βŸ¨β€œπ‘…π΅π΄β€βŸ© ∈ (∟Gβ€˜πΊ))
445, 6, 7, 8, 27, 9, 14, 11, 10, 43ragcom 27938 . . . . . . 7 (πœ‘ β†’ βŸ¨β€œπ΄π΅π‘…β€βŸ© ∈ (∟Gβ€˜πΊ))
4544adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ βŸ¨β€œπ΄π΅π‘…β€βŸ© ∈ (∟Gβ€˜πΊ))
46 animorrl 979 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ (𝑅 ∈ (𝐴𝐿𝐡) ∨ 𝐴 = 𝐡))
475, 6, 7, 8, 27, 28, 29, 30, 31, 45, 46ragflat3 27946 . . . . 5 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ (𝐴 = 𝐡 ∨ 𝑅 = 𝐡))
48 oran 988 . . . . 5 ((𝐴 = 𝐡 ∨ 𝑅 = 𝐡) ↔ Β¬ (Β¬ 𝐴 = 𝐡 ∧ Β¬ 𝑅 = 𝐡))
4947, 48sylib 217 . . . 4 ((πœ‘ ∧ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ Β¬ (Β¬ 𝐴 = 𝐡 ∧ Β¬ 𝑅 = 𝐡))
5026, 49pm2.65da 815 . . 3 (πœ‘ β†’ Β¬ 𝑅 ∈ (𝐴𝐿𝐡))
515, 6, 7, 8, 9, 13, 14, 50foot 27962 . 2 (πœ‘ β†’ βˆƒ!𝑦 ∈ (𝐴𝐿𝐡)(𝑅𝐿𝑦)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
525, 7, 8, 9, 10, 11, 12tglinerflx2 27874 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐿𝐡))
53 mideulem2.1 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
5412neneqd 2945 . . . . 5 (πœ‘ β†’ Β¬ 𝐴 = 𝐡)
55 oveq2 7413 . . . . . . 7 (𝑦 = 𝐴 β†’ (𝑅𝐿𝑦) = (𝑅𝐿𝐴))
5655breq1d 5157 . . . . . 6 (𝑦 = 𝐴 β†’ ((𝑅𝐿𝑦)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡) ↔ (𝑅𝐿𝐴)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡)))
5751adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ βˆƒ!𝑦 ∈ (𝐴𝐿𝐡)(𝑅𝐿𝑦)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
585, 7, 8, 9, 10, 11, 12tglinerflx1 27873 . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ (𝐴𝐿𝐡))
5958adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐴 ∈ (𝐴𝐿𝐡))
6052adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐡 ∈ (𝐴𝐿𝐡))
619adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐺 ∈ TarskiG)
6214adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑅 ∈ 𝑃)
6310adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐴 ∈ 𝑃)
6450, 54jca 512 . . . . . . . . . . . 12 (πœ‘ β†’ (Β¬ 𝑅 ∈ (𝐴𝐿𝐡) ∧ Β¬ 𝐴 = 𝐡))
65 pm4.56 987 . . . . . . . . . . . 12 ((Β¬ 𝑅 ∈ (𝐴𝐿𝐡) ∧ Β¬ 𝐴 = 𝐡) ↔ Β¬ (𝑅 ∈ (𝐴𝐿𝐡) ∨ 𝐴 = 𝐡))
6664, 65sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ Β¬ (𝑅 ∈ (𝐴𝐿𝐡) ∨ 𝐴 = 𝐡))
675, 7, 8, 9, 14, 10, 11, 66ncolne1 27865 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 β‰  𝐴)
6867adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑅 β‰  𝐴)
695, 7, 8, 61, 62, 63, 68tglinecom 27875 . . . . . . . 8 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑅𝐿𝐴) = (𝐴𝐿𝑅))
7068necomd 2996 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐴 β‰  𝑅)
7117adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑂 ∈ 𝑃)
7221necomd 2996 . . . . . . . . . 10 (πœ‘ β†’ 𝑂 β‰  𝐴)
7372adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑂 β‰  𝐴)
7453adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑋 ∈ 𝑃)
75 simpr 485 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑋 = 𝐴)
7675, 70eqnetrd 3008 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑋 β‰  𝑅)
77 mideulem2.3 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑋 ∈ (𝑅𝐼𝑂))
785, 6, 7, 9, 14, 53, 17, 77tgbtwncom 27728 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑋 ∈ (𝑂𝐼𝑅))
79 mideulem.4 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑇 ∈ 𝑃)
80 mideulem.7 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑇 ∈ (𝐴𝐿𝐡))
81 mideulem2.2 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑋 ∈ (𝑇𝐼𝐡))
825, 7, 8, 9, 79, 10, 11, 53, 80, 81coltr3 27888 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑋 ∈ (𝐴𝐿𝐡))
8312necomd 2996 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ 𝐡 β‰  𝐴)
8483neneqd 2945 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ Β¬ 𝐡 = 𝐴)
8584adantr 481 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ Β¬ 𝐡 = 𝐴)
8672neneqd 2945 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ Β¬ 𝑂 = 𝐴)
8786adantr 481 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ Β¬ 𝑂 = 𝐴)
8885, 87jca 512 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ (Β¬ 𝐡 = 𝐴 ∧ Β¬ 𝑂 = 𝐴))
899adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ 𝐺 ∈ TarskiG)
9011adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ 𝐡 ∈ 𝑃)
9110adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ 𝐴 ∈ 𝑃)
9217adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ 𝑂 ∈ 𝑃)
935, 7, 8, 9, 11, 10, 83tglinerflx2 27874 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐿𝐴))
9438, 19eqbrtrrd 5171 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ (𝐡𝐿𝐴)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝑂))
955, 6, 7, 8, 9, 11, 10, 93, 17, 94perprag 27966 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ βŸ¨β€œπ΅π΄π‘‚β€βŸ© ∈ (∟Gβ€˜πΊ))
9695adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ βŸ¨β€œπ΅π΄π‘‚β€βŸ© ∈ (∟Gβ€˜πΊ))
97 animorrl 979 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ (𝑂 ∈ (𝐡𝐿𝐴) ∨ 𝐡 = 𝐴))
985, 6, 7, 8, 27, 89, 90, 91, 92, 96, 97ragflat3 27946 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ (𝐡 = 𝐴 ∨ 𝑂 = 𝐴))
99 oran 988 . . . . . . . . . . . . . . . . . . 19 ((𝐡 = 𝐴 ∨ 𝑂 = 𝐴) ↔ Β¬ (Β¬ 𝐡 = 𝐴 ∧ Β¬ 𝑂 = 𝐴))
10098, 99sylib 217 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑂 ∈ (𝐡𝐿𝐴)) β†’ Β¬ (Β¬ 𝐡 = 𝐴 ∧ Β¬ 𝑂 = 𝐴))
10188, 100pm2.65da 815 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ Β¬ 𝑂 ∈ (𝐡𝐿𝐴))
102101, 38neleqtrrd 2856 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ Β¬ 𝑂 ∈ (𝐴𝐿𝐡))
103 nelne2 3040 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (𝐴𝐿𝐡) ∧ Β¬ 𝑂 ∈ (𝐴𝐿𝐡)) β†’ 𝑋 β‰  𝑂)
10482, 102, 103syl2anc 584 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑋 β‰  𝑂)
1055, 6, 7, 9, 17, 53, 14, 78, 104tgbtwnne 27730 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑂 β‰  𝑅)
106105adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑂 β‰  𝑅)
107106necomd 2996 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑅 β‰  𝑂)
10877adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑋 ∈ (𝑅𝐼𝑂))
1095, 7, 8, 61, 62, 71, 74, 107, 108btwnlng1 27859 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑋 ∈ (𝑅𝐿𝑂))
1105, 7, 8, 61, 74, 62, 71, 76, 109, 107lnrot2 27864 . . . . . . . . . 10 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑂 ∈ (𝑋𝐿𝑅))
11175oveq1d 7420 . . . . . . . . . 10 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑋𝐿𝑅) = (𝐴𝐿𝑅))
112110, 111eleqtrd 2835 . . . . . . . . 9 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝑂 ∈ (𝐴𝐿𝑅))
1135, 7, 8, 61, 63, 62, 70, 71, 73, 112tglineelsb2 27872 . . . . . . . 8 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝐴𝐿𝑅) = (𝐴𝐿𝑂))
11469, 113eqtrd 2772 . . . . . . 7 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑅𝐿𝐴) = (𝐴𝐿𝑂))
1155, 6, 7, 8, 9, 13, 20, 19perpcom 27953 . . . . . . . 8 (πœ‘ β†’ (𝐴𝐿𝑂)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
116115adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝐴𝐿𝑂)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
117114, 116eqbrtrd 5169 . . . . . 6 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑅𝐿𝐴)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
11813adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝐴𝐿𝐡) ∈ ran 𝐿)
11922necomd 2996 . . . . . . . . 9 (πœ‘ β†’ 𝑅 β‰  𝐡)
1205, 7, 8, 9, 14, 11, 119tgelrnln 27870 . . . . . . . 8 (πœ‘ β†’ (𝑅𝐿𝐡) ∈ ran 𝐿)
121120adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑅𝐿𝐡) ∈ ran 𝐿)
1225, 7, 8, 9, 14, 11, 119tglinerflx2 27874 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ (𝑅𝐿𝐡))
12352, 122elind 4193 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ ((𝐴𝐿𝐡) ∩ (𝑅𝐿𝐡)))
1245, 7, 8, 9, 14, 11, 119tglinerflx1 27873 . . . . . . . . 9 (πœ‘ β†’ 𝑅 ∈ (𝑅𝐿𝐡))
1255, 6, 7, 8, 9, 13, 120, 123, 58, 124, 12, 119, 44ragperp 27957 . . . . . . . 8 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝑅𝐿𝐡))
126125adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝑅𝐿𝐡))
1275, 6, 7, 8, 61, 118, 121, 126perpcom 27953 . . . . . 6 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ (𝑅𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
12856, 2, 57, 59, 60, 117, 127reu2eqd 3731 . . . . 5 ((πœ‘ ∧ 𝑋 = 𝐴) β†’ 𝐴 = 𝐡)
12954, 128mtand 814 . . . 4 (πœ‘ β†’ Β¬ 𝑋 = 𝐴)
130129neqned 2947 . . 3 (πœ‘ β†’ 𝑋 β‰  𝐴)
131 mideulem2.7 . . 3 (πœ‘ β†’ 𝑀 ∈ 𝑃)
132130necomd 2996 . . . 4 (πœ‘ β†’ 𝐴 β‰  𝑋)
133 eqid 2732 . . . . 5 (π‘†β€˜π΄) = (π‘†β€˜π΄)
134 eqid 2732 . . . . 5 (π‘†β€˜π‘€) = (π‘†β€˜π‘€)
1355, 6, 7, 8, 27, 9, 10, 133, 17mircl 27901 . . . . 5 (πœ‘ β†’ ((π‘†β€˜π΄)β€˜π‘‚) ∈ 𝑃)
136 mideulem2.4 . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑃)
137 mideulem2.5 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (((π‘†β€˜π΄)β€˜π‘‚)𝐼𝑍))
13882orcd 871 . . . . . . . . 9 (πœ‘ β†’ (𝑋 ∈ (𝐴𝐿𝐡) ∨ 𝐴 = 𝐡))
1395, 8, 7, 9, 10, 11, 53, 138colcom 27798 . . . . . . . 8 (πœ‘ β†’ (𝑋 ∈ (𝐡𝐿𝐴) ∨ 𝐡 = 𝐴))
1405, 8, 7, 9, 11, 10, 53, 139colrot1 27799 . . . . . . 7 (πœ‘ β†’ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1415, 6, 7, 8, 27, 9, 11, 10, 17, 53, 95, 83, 140ragcol 27939 . . . . . 6 (πœ‘ β†’ βŸ¨β€œπ‘‹π΄π‘‚β€βŸ© ∈ (∟Gβ€˜πΊ))
1425, 6, 7, 8, 27, 9, 53, 10, 17israg 27937 . . . . . 6 (πœ‘ β†’ (βŸ¨β€œπ‘‹π΄π‘‚β€βŸ© ∈ (∟Gβ€˜πΊ) ↔ (𝑋 βˆ’ 𝑂) = (𝑋 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚))))
143141, 142mpbid 231 . . . . 5 (πœ‘ β†’ (𝑋 βˆ’ 𝑂) = (𝑋 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚)))
144 mideulem2.6 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ 𝑍) = (𝑋 βˆ’ 𝑅))
145144eqcomd 2738 . . . . 5 (πœ‘ β†’ (𝑋 βˆ’ 𝑅) = (𝑋 βˆ’ 𝑍))
146 eqidd 2733 . . . . 5 (πœ‘ β†’ ((π‘†β€˜π΄)β€˜π‘‚) = ((π‘†β€˜π΄)β€˜π‘‚))
147 mideulem2.8 . . . . . . . 8 (πœ‘ β†’ 𝑅 = ((π‘†β€˜π‘€)β€˜π‘))
148147eqcomd 2738 . . . . . . 7 (πœ‘ β†’ ((π‘†β€˜π‘€)β€˜π‘) = 𝑅)
1495, 6, 7, 8, 27, 9, 131, 134, 136, 148mircom 27903 . . . . . 6 (πœ‘ β†’ ((π‘†β€˜π‘€)β€˜π‘…) = 𝑍)
150149eqcomd 2738 . . . . 5 (πœ‘ β†’ 𝑍 = ((π‘†β€˜π‘€)β€˜π‘…))
1515, 6, 7, 8, 27, 9, 133, 134, 17, 135, 53, 14, 136, 10, 131, 78, 137, 143, 145, 146, 150krippen 27931 . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝐴𝐼𝑀))
1525, 7, 8, 9, 10, 53, 131, 132, 151btwnlng3 27861 . . 3 (πœ‘ β†’ 𝑀 ∈ (𝐴𝐿𝑋))
1535, 7, 8, 9, 10, 11, 12, 53, 130, 82, 131, 152tglineeltr 27871 . 2 (πœ‘ β†’ 𝑀 ∈ (𝐴𝐿𝐡))
1545, 6, 7, 8, 9, 13, 120, 125perpcom 27953 . 2 (πœ‘ β†’ (𝑅𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
155 nelne2 3040 . . . . . 6 ((𝑀 ∈ (𝐴𝐿𝐡) ∧ Β¬ 𝑅 ∈ (𝐴𝐿𝐡)) β†’ 𝑀 β‰  𝑅)
156153, 50, 155syl2anc 584 . . . . 5 (πœ‘ β†’ 𝑀 β‰  𝑅)
157156necomd 2996 . . . 4 (πœ‘ β†’ 𝑅 β‰  𝑀)
1585, 7, 8, 9, 14, 131, 157tgelrnln 27870 . . 3 (πœ‘ β†’ (𝑅𝐿𝑀) ∈ ran 𝐿)
1595, 7, 8, 9, 14, 131, 157tglinerflx2 27874 . . . . 5 (πœ‘ β†’ 𝑀 ∈ (𝑅𝐿𝑀))
160153, 159elind 4193 . . . 4 (πœ‘ β†’ 𝑀 ∈ ((𝐴𝐿𝐡) ∩ (𝑅𝐿𝑀)))
1615, 7, 8, 9, 14, 131, 157tglinerflx1 27873 . . . 4 (πœ‘ β†’ 𝑅 ∈ (𝑅𝐿𝑀))
162 simpr 485 . . . . . . . 8 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 = 𝑋)
1639adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝐺 ∈ TarskiG)
164131adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ 𝑃)
16510adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝐴 ∈ 𝑃)
16617adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑂 ∈ 𝑃)
167135adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ ((π‘†β€˜π΄)β€˜π‘‚) ∈ 𝑃)
168143adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑋 βˆ’ 𝑂) = (𝑋 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚)))
169162oveq1d 7420 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ 𝑂) = (𝑋 βˆ’ 𝑂))
170162oveq1d 7420 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚)) = (𝑋 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚)))
171168, 169, 1703eqtr4rd 2783 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ ((π‘†β€˜π΄)β€˜π‘‚)) = (𝑀 βˆ’ 𝑂))
172136adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑍 ∈ 𝑃)
17314adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑅 ∈ 𝑃)
174147adantr 481 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑅 = ((π‘†β€˜π‘€)β€˜π‘))
175174oveq2d 7421 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ 𝑅) = (𝑀 βˆ’ ((π‘†β€˜π‘€)β€˜π‘)))
1765, 6, 7, 8, 27, 163, 164, 134, 172mircgr 27897 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ ((π‘†β€˜π‘€)β€˜π‘)) = (𝑀 βˆ’ 𝑍))
177175, 176eqtrd 2772 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑀 βˆ’ 𝑅) = (𝑀 βˆ’ 𝑍))
1785, 6, 7, 163, 164, 173, 164, 172, 177tgcgrcomlr 27720 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ (𝑅 βˆ’ 𝑀) = (𝑍 βˆ’ 𝑀))
17982adantr 481 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑋 ∈ (𝐴𝐿𝐡))
180162, 179eqeltrd 2833 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (𝐴𝐿𝐡))
18150adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ Β¬ 𝑅 ∈ (𝐴𝐿𝐡))
182180, 181, 155syl2anc 584 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 β‰  𝑅)
183182necomd 2996 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑅 β‰  𝑀)
1845, 6, 7, 163, 173, 164, 172, 164, 178, 183tgcgrneq 27723 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑍 β‰  𝑀)
1855, 6, 7, 8, 27, 9, 131, 134, 136mirbtwn 27898 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑀 ∈ (((π‘†β€˜π‘€)β€˜π‘)𝐼𝑍))
186147oveq1d 7420 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑅𝐼𝑍) = (((π‘†β€˜π‘€)β€˜π‘)𝐼𝑍))
187185, 186eleqtrrd 2836 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑀 ∈ (𝑅𝐼𝑍))
188187adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (𝑅𝐼𝑍))
1895, 6, 7, 163, 173, 164, 172, 188tgbtwncom 27728 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (𝑍𝐼𝑅))
190137adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑋 ∈ (((π‘†β€˜π΄)β€˜π‘‚)𝐼𝑍))
191162, 190eqeltrd 2833 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (((π‘†β€˜π΄)β€˜π‘‚)𝐼𝑍))
1925, 6, 7, 163, 167, 164, 172, 191tgbtwncom 27728 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (𝑍𝐼((π‘†β€˜π΄)β€˜π‘‚)))
19377adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑋 ∈ (𝑅𝐼𝑂))
194162, 193eqeltrd 2833 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (𝑅𝐼𝑂))
1955, 7, 163, 172, 164, 173, 167, 166, 184, 183, 189, 192, 194tgbtwnconn22 27819 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 ∈ (((π‘†β€˜π΄)β€˜π‘‚)𝐼𝑂))
1965, 6, 7, 8, 27, 163, 164, 134, 166, 167, 171, 195ismir 27899 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ ((π‘†β€˜π΄)β€˜π‘‚) = ((π‘†β€˜π‘€)β€˜π‘‚))
197196eqcomd 2738 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ ((π‘†β€˜π‘€)β€˜π‘‚) = ((π‘†β€˜π΄)β€˜π‘‚))
1985, 6, 7, 8, 27, 163, 164, 165, 166, 197miduniq1 27926 . . . . . . . 8 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑀 = 𝐴)
199162, 198eqtr3d 2774 . . . . . . 7 ((πœ‘ ∧ 𝑀 = 𝑋) β†’ 𝑋 = 𝐴)
200129, 199mtand 814 . . . . . 6 (πœ‘ β†’ Β¬ 𝑀 = 𝑋)
201200neqned 2947 . . . . 5 (πœ‘ β†’ 𝑀 β‰  𝑋)
202201necomd 2996 . . . 4 (πœ‘ β†’ 𝑋 β‰  𝑀)
203149oveq2d 7421 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ ((π‘†β€˜π‘€)β€˜π‘…)) = (𝑋 βˆ’ 𝑍))
204203, 144eqtr2d 2773 . . . . 5 (πœ‘ β†’ (𝑋 βˆ’ 𝑅) = (𝑋 βˆ’ ((π‘†β€˜π‘€)β€˜π‘…)))
2055, 6, 7, 8, 27, 9, 53, 131, 14israg 27937 . . . . 5 (πœ‘ β†’ (βŸ¨β€œπ‘‹π‘€π‘…β€βŸ© ∈ (∟Gβ€˜πΊ) ↔ (𝑋 βˆ’ 𝑅) = (𝑋 βˆ’ ((π‘†β€˜π‘€)β€˜π‘…))))
206204, 205mpbird 256 . . . 4 (πœ‘ β†’ βŸ¨β€œπ‘‹π‘€π‘…β€βŸ© ∈ (∟Gβ€˜πΊ))
2075, 6, 7, 8, 9, 13, 158, 160, 82, 161, 202, 157, 206ragperp 27957 . . 3 (πœ‘ β†’ (𝐴𝐿𝐡)(βŸ‚Gβ€˜πΊ)(𝑅𝐿𝑀))
2085, 6, 7, 8, 9, 13, 158, 207perpcom 27953 . 2 (πœ‘ β†’ (𝑅𝐿𝑀)(βŸ‚Gβ€˜πΊ)(𝐴𝐿𝐡))
2092, 4, 51, 52, 153, 154, 208reu2eqd 3731 1 (πœ‘ β†’ 𝐡 = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒ!wreu 3374   class class class wbr 5147  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  βŸ¨β€œcs3 14789  Basecbs 17140  distcds 17202  TarskiGcstrkg 27667  Itvcitv 27673  LineGclng 27674  pInvGcmir 27892  βˆŸGcrag 27933  βŸ‚Gcperpg 27935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-trkgc 27688  df-trkgb 27689  df-trkgcb 27690  df-trkg 27693  df-cgrg 27751  df-leg 27823  df-mir 27893  df-rag 27934  df-perpg 27936
This theorem is referenced by:  opphllem  27975
  Copyright terms: Public domain W3C validator