Step | Hyp | Ref
| Expression |
1 | | oveq2 7292 |
. . 3
⊢ (𝑦 = 𝐵 → (𝑅𝐿𝑦) = (𝑅𝐿𝐵)) |
2 | 1 | breq1d 5085 |
. 2
⊢ (𝑦 = 𝐵 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
3 | | oveq2 7292 |
. . 3
⊢ (𝑦 = 𝑀 → (𝑅𝐿𝑦) = (𝑅𝐿𝑀)) |
4 | 3 | breq1d 5085 |
. 2
⊢ (𝑦 = 𝑀 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
5 | | colperpex.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
6 | | colperpex.d |
. . 3
⊢ − =
(dist‘𝐺) |
7 | | colperpex.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
8 | | colperpex.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
9 | | colperpex.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
10 | | mideu.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
11 | | mideu.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
12 | | mideulem.1 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
13 | 5, 7, 8, 9, 10, 11, 12 | tgelrnln 27000 |
. . 3
⊢ (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿) |
14 | | opphllem.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
15 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴 ≠ 𝐵) |
16 | 15 | neneqd 2949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝐴 = 𝐵) |
17 | | mideulem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ 𝑃) |
18 | | opphllem.3 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
19 | | mideulem.6 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
20 | 8, 9, 19 | perpln2 27081 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿) |
21 | 5, 7, 8, 9, 10, 17, 20 | tglnne 26998 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ 𝑂) |
22 | 5, 6, 7, 9, 10, 17, 11, 14, 18, 21 | tgcgrneq 26853 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑅) |
23 | 22 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵 ≠ 𝑅) |
24 | 23 | necomd 3000 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ≠ 𝐵) |
25 | 24 | neneqd 2949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝑅 = 𝐵) |
26 | 16, 25 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
27 | | mideu.s |
. . . . . 6
⊢ 𝑆 = (pInvG‘𝐺) |
28 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG) |
29 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴 ∈ 𝑃) |
30 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵 ∈ 𝑃) |
31 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ∈ 𝑃) |
32 | | mideulem.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
33 | | mideulem.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
34 | 8, 9, 33 | perpln2 27081 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄𝐿𝐵) ∈ ran 𝐿) |
35 | 5, 7, 8, 9, 32, 11, 34 | tglnne 26998 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ≠ 𝐵) |
36 | 5, 7, 8, 9, 32, 11, 35 | tglinerflx2 27004 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝑄𝐿𝐵)) |
37 | 5, 6, 7, 8, 9, 13,
34, 33 | perpcom 27083 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
38 | 5, 7, 8, 9, 10, 11, 12 | tglinecom 27005 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
39 | 37, 38 | breqtrd 5101 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐴)) |
40 | 5, 6, 7, 8, 9, 32,
11, 36, 10, 39 | perprag 27096 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝑄𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
41 | | opphllem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) |
42 | 5, 8, 7, 9, 11, 14, 32, 41 | btwncolg3 26927 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (𝐵𝐿𝑅) ∨ 𝐵 = 𝑅)) |
43 | 5, 6, 7, 8, 27, 9,
32, 11, 10, 14, 40, 35, 42 | ragcol 27069 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝑅𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
44 | 5, 6, 7, 8, 27, 9,
14, 11, 10, 43 | ragcom 27068 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝑅”〉 ∈ (∟G‘𝐺)) |
45 | 44 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 〈“𝐴𝐵𝑅”〉 ∈ (∟G‘𝐺)) |
46 | | animorrl 978 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
47 | 5, 6, 7, 8, 27, 28, 29, 30, 31, 45, 46 | ragflat3 27076 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (𝐴 = 𝐵 ∨ 𝑅 = 𝐵)) |
48 | | oran 987 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∨ 𝑅 = 𝐵) ↔ ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
49 | 47, 48 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
50 | 26, 49 | pm2.65da 814 |
. . 3
⊢ (𝜑 → ¬ 𝑅 ∈ (𝐴𝐿𝐵)) |
51 | 5, 6, 7, 8, 9, 13,
14, 50 | foot 27092 |
. 2
⊢ (𝜑 → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
52 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx2 27004 |
. 2
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐿𝐵)) |
53 | | mideulem2.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
54 | 12 | neneqd 2949 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
55 | | oveq2 7292 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑅𝐿𝑦) = (𝑅𝐿𝐴)) |
56 | 55 | breq1d 5085 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
57 | 51 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
58 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx1 27003 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝐴𝐿𝐵)) |
59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐿𝐵)) |
60 | 52 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐵 ∈ (𝐴𝐿𝐵)) |
61 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐺 ∈ TarskiG) |
62 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ∈ 𝑃) |
63 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ∈ 𝑃) |
64 | 50, 54 | jca 512 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ 𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵)) |
65 | | pm4.56 986 |
. . . . . . . . . . . 12
⊢ ((¬
𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
66 | 64, 65 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
67 | 5, 7, 8, 9, 14, 10, 11, 66 | ncolne1 26995 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ≠ 𝐴) |
68 | 67 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ≠ 𝐴) |
69 | 5, 7, 8, 61, 62, 63, 68 | tglinecom 27005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑅)) |
70 | 68 | necomd 3000 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ≠ 𝑅) |
71 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ 𝑃) |
72 | 21 | necomd 3000 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ≠ 𝐴) |
73 | 72 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ≠ 𝐴) |
74 | 53 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ 𝑃) |
75 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 = 𝐴) |
76 | 75, 70 | eqnetrd 3012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ≠ 𝑅) |
77 | | mideulem2.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (𝑅𝐼𝑂)) |
78 | 5, 6, 7, 9, 14, 53, 17, 77 | tgbtwncom 26858 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ (𝑂𝐼𝑅)) |
79 | | mideulem.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
80 | | mideulem.7 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) |
81 | | mideulem2.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ (𝑇𝐼𝐵)) |
82 | 5, 7, 8, 9, 79, 10, 11, 53, 80, 81 | coltr3 27018 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) |
83 | 12 | necomd 3000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
84 | 83 | neneqd 2949 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 𝐵 = 𝐴) |
85 | 84 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴) |
86 | 72 | neneqd 2949 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 𝑂 = 𝐴) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴) |
88 | 85, 87 | jca 512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
89 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG) |
90 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵 ∈ 𝑃) |
91 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴 ∈ 𝑃) |
92 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ 𝑃) |
93 | 5, 7, 8, 9, 11, 10, 83 | tglinerflx2 27004 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐴)) |
94 | 38, 19 | eqbrtrrd 5099 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
95 | 5, 6, 7, 8, 9, 11,
10, 93, 17, 94 | perprag 27096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
96 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
97 | | animorrl 978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
98 | 5, 6, 7, 8, 27, 89, 90, 91, 92, 96, 97 | ragflat3 27076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴 ∨ 𝑂 = 𝐴)) |
99 | | oran 987 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 = 𝐴 ∨ 𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
100 | 98, 99 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
101 | 88, 100 | pm2.65da 814 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴)) |
102 | 101, 38 | neleqtrrd 2862 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵)) |
103 | | nelne2 3043 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑋 ≠ 𝑂) |
104 | 82, 102, 103 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ≠ 𝑂) |
105 | 5, 6, 7, 9, 17, 53, 14, 78, 104 | tgbtwnne 26860 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ≠ 𝑅) |
106 | 105 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ≠ 𝑅) |
107 | 106 | necomd 3000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ≠ 𝑂) |
108 | 77 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐼𝑂)) |
109 | 5, 7, 8, 61, 62, 71, 74, 107, 108 | btwnlng1 26989 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐿𝑂)) |
110 | 5, 7, 8, 61, 74, 62, 71, 76, 109, 107 | lnrot2 26994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ (𝑋𝐿𝑅)) |
111 | 75 | oveq1d 7299 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑋𝐿𝑅) = (𝐴𝐿𝑅)) |
112 | 110, 111 | eleqtrd 2842 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ (𝐴𝐿𝑅)) |
113 | 5, 7, 8, 61, 63, 62, 70, 71, 73, 112 | tglineelsb2 27002 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝑅) = (𝐴𝐿𝑂)) |
114 | 69, 113 | eqtrd 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑂)) |
115 | 5, 6, 7, 8, 9, 13,
20, 19 | perpcom 27083 |
. . . . . . . 8
⊢ (𝜑 → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
116 | 115 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
117 | 114, 116 | eqbrtrd 5097 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
118 | 13 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
119 | 22 | necomd 3000 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ≠ 𝐵) |
120 | 5, 7, 8, 9, 14, 11, 119 | tgelrnln 27000 |
. . . . . . . 8
⊢ (𝜑 → (𝑅𝐿𝐵) ∈ ran 𝐿) |
121 | 120 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐵) ∈ ran 𝐿) |
122 | 5, 7, 8, 9, 14, 11, 119 | tglinerflx2 27004 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝑅𝐿𝐵)) |
123 | 52, 122 | elind 4129 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝐵))) |
124 | 5, 7, 8, 9, 14, 11, 119 | tglinerflx1 27003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ (𝑅𝐿𝐵)) |
125 | 5, 6, 7, 8, 9, 13,
120, 123, 58, 124, 12, 119, 44 | ragperp 27087 |
. . . . . . . 8
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵)) |
126 | 125 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵)) |
127 | 5, 6, 7, 8, 61, 118, 121, 126 | perpcom 27083 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
128 | 56, 2, 57, 59, 60, 117, 127 | reu2eqd 3672 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 = 𝐵) |
129 | 54, 128 | mtand 813 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 = 𝐴) |
130 | 129 | neqned 2951 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 𝐴) |
131 | | mideulem2.7 |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝑃) |
132 | 130 | necomd 3000 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ 𝑋) |
133 | | eqid 2739 |
. . . . 5
⊢ (𝑆‘𝐴) = (𝑆‘𝐴) |
134 | | eqid 2739 |
. . . . 5
⊢ (𝑆‘𝑀) = (𝑆‘𝑀) |
135 | 5, 6, 7, 8, 27, 9,
10, 133, 17 | mircl 27031 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
136 | | mideulem2.4 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
137 | | mideulem2.5 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
138 | 82 | orcd 870 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
139 | 5, 8, 7, 9, 10, 11, 53, 138 | colcom 26928 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
140 | 5, 8, 7, 9, 11, 10, 53, 139 | colrot1 26929 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
141 | 5, 6, 7, 8, 27, 9,
11, 10, 17, 53, 95, 83, 140 | ragcol 27069 |
. . . . . 6
⊢ (𝜑 → 〈“𝑋𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
142 | 5, 6, 7, 8, 27, 9,
53, 10, 17 | israg 27067 |
. . . . . 6
⊢ (𝜑 → (〈“𝑋𝐴𝑂”〉 ∈ (∟G‘𝐺) ↔ (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂)))) |
143 | 141, 142 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
144 | | mideulem2.6 |
. . . . . 6
⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑅)) |
145 | 144 | eqcomd 2745 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑅) = (𝑋 − 𝑍)) |
146 | | eqidd 2740 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐴)‘𝑂) = ((𝑆‘𝐴)‘𝑂)) |
147 | | mideulem2.8 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = ((𝑆‘𝑀)‘𝑍)) |
148 | 147 | eqcomd 2745 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑀)‘𝑍) = 𝑅) |
149 | 5, 6, 7, 8, 27, 9,
131, 134, 136, 148 | mircom 27033 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝑀)‘𝑅) = 𝑍) |
150 | 149 | eqcomd 2745 |
. . . . 5
⊢ (𝜑 → 𝑍 = ((𝑆‘𝑀)‘𝑅)) |
151 | 5, 6, 7, 8, 27, 9,
133, 134, 17, 135, 53, 14, 136, 10, 131, 78, 137, 143, 145, 146, 150 | krippen 27061 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐴𝐼𝑀)) |
152 | 5, 7, 8, 9, 10, 53, 131, 132, 151 | btwnlng3 26991 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝐴𝐿𝑋)) |
153 | 5, 7, 8, 9, 10, 11, 12, 53, 130, 82, 131, 152 | tglineeltr 27001 |
. 2
⊢ (𝜑 → 𝑀 ∈ (𝐴𝐿𝐵)) |
154 | 5, 6, 7, 8, 9, 13,
120, 125 | perpcom 27083 |
. 2
⊢ (𝜑 → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
155 | | nelne2 3043 |
. . . . . 6
⊢ ((𝑀 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑀 ≠ 𝑅) |
156 | 153, 50, 155 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝑀 ≠ 𝑅) |
157 | 156 | necomd 3000 |
. . . 4
⊢ (𝜑 → 𝑅 ≠ 𝑀) |
158 | 5, 7, 8, 9, 14, 131, 157 | tgelrnln 27000 |
. . 3
⊢ (𝜑 → (𝑅𝐿𝑀) ∈ ran 𝐿) |
159 | 5, 7, 8, 9, 14, 131, 157 | tglinerflx2 27004 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑅𝐿𝑀)) |
160 | 153, 159 | elind 4129 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝑀))) |
161 | 5, 7, 8, 9, 14, 131, 157 | tglinerflx1 27003 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝑅𝐿𝑀)) |
162 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 = 𝑋) |
163 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝐺 ∈ TarskiG) |
164 | 131 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ 𝑃) |
165 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝐴 ∈ 𝑃) |
166 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑂 ∈ 𝑃) |
167 | 135 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
168 | 143 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
169 | 162 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑂) = (𝑋 − 𝑂)) |
170 | 162 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝐴)‘𝑂)) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
171 | 168, 169,
170 | 3eqtr4rd 2790 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝐴)‘𝑂)) = (𝑀 − 𝑂)) |
172 | 136 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑍 ∈ 𝑃) |
173 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 ∈ 𝑃) |
174 | 147 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 = ((𝑆‘𝑀)‘𝑍)) |
175 | 174 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑅) = (𝑀 − ((𝑆‘𝑀)‘𝑍))) |
176 | 5, 6, 7, 8, 27, 163, 164, 134, 172 | mircgr 27027 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝑀)‘𝑍)) = (𝑀 − 𝑍)) |
177 | 175, 176 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑅) = (𝑀 − 𝑍)) |
178 | 5, 6, 7, 163, 164, 173, 164, 172, 177 | tgcgrcomlr 26850 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑅 − 𝑀) = (𝑍 − 𝑀)) |
179 | 82 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (𝐴𝐿𝐵)) |
180 | 162, 179 | eqeltrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝐴𝐿𝐵)) |
181 | 50 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ¬ 𝑅 ∈ (𝐴𝐿𝐵)) |
182 | 180, 181,
155 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ≠ 𝑅) |
183 | 182 | necomd 3000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 ≠ 𝑀) |
184 | 5, 6, 7, 163, 173, 164, 172, 164, 178, 183 | tgcgrneq 26853 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑍 ≠ 𝑀) |
185 | 5, 6, 7, 8, 27, 9,
131, 134, 136 | mirbtwn 27028 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (((𝑆‘𝑀)‘𝑍)𝐼𝑍)) |
186 | 147 | oveq1d 7299 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅𝐼𝑍) = (((𝑆‘𝑀)‘𝑍)𝐼𝑍)) |
187 | 185, 186 | eleqtrrd 2843 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (𝑅𝐼𝑍)) |
188 | 187 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑍)) |
189 | 5, 6, 7, 163, 173, 164, 172, 188 | tgbtwncom 26858 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼𝑅)) |
190 | 137 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
191 | 162, 190 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
192 | 5, 6, 7, 163, 167, 164, 172, 191 | tgbtwncom 26858 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼((𝑆‘𝐴)‘𝑂))) |
193 | 77 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (𝑅𝐼𝑂)) |
194 | 162, 193 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑂)) |
195 | 5, 7, 163, 172, 164, 173, 167, 166, 184, 183, 189, 192, 194 | tgbtwnconn22 26949 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑂)) |
196 | 5, 6, 7, 8, 27, 163, 164, 134, 166, 167, 171, 195 | ismir 27029 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝐴)‘𝑂) = ((𝑆‘𝑀)‘𝑂)) |
197 | 196 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝑀)‘𝑂) = ((𝑆‘𝐴)‘𝑂)) |
198 | 5, 6, 7, 8, 27, 163, 164, 165, 166, 197 | miduniq1 27056 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 = 𝐴) |
199 | 162, 198 | eqtr3d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 = 𝐴) |
200 | 129, 199 | mtand 813 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑀 = 𝑋) |
201 | 200 | neqned 2951 |
. . . . 5
⊢ (𝜑 → 𝑀 ≠ 𝑋) |
202 | 201 | necomd 3000 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 𝑀) |
203 | 149 | oveq2d 7300 |
. . . . . 6
⊢ (𝜑 → (𝑋 − ((𝑆‘𝑀)‘𝑅)) = (𝑋 − 𝑍)) |
204 | 203, 144 | eqtr2d 2780 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑅) = (𝑋 − ((𝑆‘𝑀)‘𝑅))) |
205 | 5, 6, 7, 8, 27, 9,
53, 131, 14 | israg 27067 |
. . . . 5
⊢ (𝜑 → (〈“𝑋𝑀𝑅”〉 ∈ (∟G‘𝐺) ↔ (𝑋 − 𝑅) = (𝑋 − ((𝑆‘𝑀)‘𝑅)))) |
206 | 204, 205 | mpbird 256 |
. . . 4
⊢ (𝜑 → 〈“𝑋𝑀𝑅”〉 ∈ (∟G‘𝐺)) |
207 | 5, 6, 7, 8, 9, 13,
158, 160, 82, 161, 202, 157, 206 | ragperp 27087 |
. . 3
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝑀)) |
208 | 5, 6, 7, 8, 9, 13,
158, 207 | perpcom 27083 |
. 2
⊢ (𝜑 → (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
209 | 2, 4, 51, 52, 153, 154, 208 | reu2eqd 3672 |
1
⊢ (𝜑 → 𝐵 = 𝑀) |