Step | Hyp | Ref
| Expression |
1 | | oveq2 6930 |
. . 3
⊢ (𝑦 = 𝐵 → (𝑅𝐿𝑦) = (𝑅𝐿𝐵)) |
2 | 1 | breq1d 4896 |
. 2
⊢ (𝑦 = 𝐵 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
3 | | oveq2 6930 |
. . 3
⊢ (𝑦 = 𝑀 → (𝑅𝐿𝑦) = (𝑅𝐿𝑀)) |
4 | 3 | breq1d 4896 |
. 2
⊢ (𝑦 = 𝑀 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
5 | | colperpex.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
6 | | colperpex.d |
. . 3
⊢ − =
(dist‘𝐺) |
7 | | colperpex.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
8 | | colperpex.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
9 | | colperpex.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
10 | | mideu.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
11 | | mideu.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
12 | | mideulem.1 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
13 | 5, 7, 8, 9, 10, 11, 12 | tgelrnln 25981 |
. . 3
⊢ (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿) |
14 | | opphllem.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
15 | 12 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴 ≠ 𝐵) |
16 | 15 | neneqd 2974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝐴 = 𝐵) |
17 | | mideulem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ 𝑃) |
18 | | opphllem.3 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) |
19 | | mideulem.6 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
20 | 8, 9, 19 | perpln2 26062 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿) |
21 | 5, 7, 8, 9, 10, 17, 20 | tglnne 25979 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ 𝑂) |
22 | 5, 6, 7, 9, 10, 17, 11, 14, 18, 21 | tgcgrneq 25834 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑅) |
23 | 22 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵 ≠ 𝑅) |
24 | 23 | necomd 3024 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ≠ 𝐵) |
25 | 24 | neneqd 2974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝑅 = 𝐵) |
26 | 16, 25 | jca 507 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
27 | | mideu.s |
. . . . . 6
⊢ 𝑆 = (pInvG‘𝐺) |
28 | 9 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG) |
29 | 10 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴 ∈ 𝑃) |
30 | 11 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵 ∈ 𝑃) |
31 | 14 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ∈ 𝑃) |
32 | | mideulem.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
33 | | mideulem.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
34 | 8, 9, 33 | perpln2 26062 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄𝐿𝐵) ∈ ran 𝐿) |
35 | 5, 7, 8, 9, 32, 11, 34 | tglnne 25979 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ≠ 𝐵) |
36 | 5, 7, 8, 9, 32, 11, 35 | tglinerflx2 25985 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝑄𝐿𝐵)) |
37 | 5, 6, 7, 8, 9, 13,
34, 33 | perpcom 26064 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
38 | 5, 7, 8, 9, 10, 11, 12 | tglinecom 25986 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
39 | 37, 38 | breqtrd 4912 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐴)) |
40 | 5, 6, 7, 8, 9, 32,
11, 36, 10, 39 | perprag 26074 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝑄𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
41 | | opphllem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) |
42 | 5, 8, 7, 9, 11, 14, 32, 41 | btwncolg3 25908 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (𝐵𝐿𝑅) ∨ 𝐵 = 𝑅)) |
43 | 5, 6, 7, 8, 27, 9,
32, 11, 10, 14, 40, 35, 42 | ragcol 26050 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝑅𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
44 | 5, 6, 7, 8, 27, 9,
14, 11, 10, 43 | ragcom 26049 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝑅”〉 ∈ (∟G‘𝐺)) |
45 | 44 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 〈“𝐴𝐵𝑅”〉 ∈ (∟G‘𝐺)) |
46 | | simpr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ∈ (𝐴𝐿𝐵)) |
47 | 46 | orcd 862 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
48 | 5, 6, 7, 8, 27, 28, 29, 30, 31, 45, 47 | ragflat3 26057 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → (𝐴 = 𝐵 ∨ 𝑅 = 𝐵)) |
49 | | oran 975 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∨ 𝑅 = 𝐵) ↔ ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
50 | 48, 49 | sylib 210 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ (𝐴𝐿𝐵)) → ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵)) |
51 | 26, 50 | pm2.65da 807 |
. . 3
⊢ (𝜑 → ¬ 𝑅 ∈ (𝐴𝐿𝐵)) |
52 | 5, 6, 7, 8, 9, 13,
14, 51 | foot 26070 |
. 2
⊢ (𝜑 → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
53 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx2 25985 |
. 2
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐿𝐵)) |
54 | | mideulem2.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
55 | 12 | neneqd 2974 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
56 | | oveq2 6930 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑅𝐿𝑦) = (𝑅𝐿𝐴)) |
57 | 56 | breq1d 4896 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵))) |
58 | 52 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
59 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx1 25984 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝐴𝐿𝐵)) |
60 | 59 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐿𝐵)) |
61 | 53 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐵 ∈ (𝐴𝐿𝐵)) |
62 | 9 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐺 ∈ TarskiG) |
63 | 14 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ∈ 𝑃) |
64 | 10 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ∈ 𝑃) |
65 | 51, 55 | jca 507 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ 𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵)) |
66 | | pm4.56 974 |
. . . . . . . . . . . 12
⊢ ((¬
𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
67 | 65, 66 | sylib 210 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
68 | 5, 7, 8, 9, 14, 10, 11, 67 | ncolne1 25976 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ≠ 𝐴) |
69 | 68 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ≠ 𝐴) |
70 | 5, 7, 8, 62, 63, 64, 69 | tglinecom 25986 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑅)) |
71 | 69 | necomd 3024 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 ≠ 𝑅) |
72 | 17 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ 𝑃) |
73 | 21 | necomd 3024 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ≠ 𝐴) |
74 | 73 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ≠ 𝐴) |
75 | 54 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ 𝑃) |
76 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 = 𝐴) |
77 | 76, 71 | eqnetrd 3036 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ≠ 𝑅) |
78 | | mideulem2.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (𝑅𝐼𝑂)) |
79 | 5, 6, 7, 9, 14, 54, 17, 78 | tgbtwncom 25839 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ (𝑂𝐼𝑅)) |
80 | | mideulem.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
81 | | mideulem.7 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) |
82 | | mideulem2.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ (𝑇𝐼𝐵)) |
83 | 5, 7, 8, 9, 80, 10, 11, 54, 81, 82 | coltr3 25999 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) |
84 | 12 | necomd 3024 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
85 | 84 | neneqd 2974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 𝐵 = 𝐴) |
86 | 85 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴) |
87 | 73 | neneqd 2974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 𝑂 = 𝐴) |
88 | 87 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴) |
89 | 86, 88 | jca 507 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
90 | 9 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG) |
91 | 11 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵 ∈ 𝑃) |
92 | 10 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴 ∈ 𝑃) |
93 | 17 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ 𝑃) |
94 | 5, 7, 8, 9, 11, 10, 84 | tglinerflx2 25985 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐴)) |
95 | 38, 19 | eqbrtrrd 4910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
96 | 5, 6, 7, 8, 9, 11,
10, 94, 17, 95 | perprag 26074 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
97 | 96 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 〈“𝐵𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
98 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴)) |
99 | 98 | orcd 862 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
100 | 5, 6, 7, 8, 27, 90, 91, 92, 93, 97, 99 | ragflat3 26057 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴 ∨ 𝑂 = 𝐴)) |
101 | | oran 975 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 = 𝐴 ∨ 𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
102 | 100, 101 | sylib 210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴)) |
103 | 89, 102 | pm2.65da 807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴)) |
104 | 103, 38 | neleqtrrd 2881 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵)) |
105 | | nelne2 3068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑋 ≠ 𝑂) |
106 | 83, 104, 105 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ≠ 𝑂) |
107 | 5, 6, 7, 9, 17, 54, 14, 79, 106 | tgbtwnne 25841 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ≠ 𝑅) |
108 | 107 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ≠ 𝑅) |
109 | 108 | necomd 3024 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑅 ≠ 𝑂) |
110 | 78 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐼𝑂)) |
111 | 5, 7, 8, 62, 63, 72, 75, 109, 110 | btwnlng1 25970 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐿𝑂)) |
112 | 5, 7, 8, 62, 75, 63, 72, 77, 111, 109 | lnrot2 25975 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ (𝑋𝐿𝑅)) |
113 | 76 | oveq1d 6937 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑋𝐿𝑅) = (𝐴𝐿𝑅)) |
114 | 112, 113 | eleqtrd 2861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑂 ∈ (𝐴𝐿𝑅)) |
115 | 5, 7, 8, 62, 64, 63, 71, 72, 74, 114 | tglineelsb2 25983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝑅) = (𝐴𝐿𝑂)) |
116 | 70, 115 | eqtrd 2814 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑂)) |
117 | 5, 6, 7, 8, 9, 13,
20, 19 | perpcom 26064 |
. . . . . . . 8
⊢ (𝜑 → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
118 | 117 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
119 | 116, 118 | eqbrtrd 4908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
120 | 13 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
121 | 22 | necomd 3024 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ≠ 𝐵) |
122 | 5, 7, 8, 9, 14, 11, 121 | tgelrnln 25981 |
. . . . . . . 8
⊢ (𝜑 → (𝑅𝐿𝐵) ∈ ran 𝐿) |
123 | 122 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐵) ∈ ran 𝐿) |
124 | 5, 7, 8, 9, 14, 11, 121 | tglinerflx2 25985 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝑅𝐿𝐵)) |
125 | 53, 124 | elind 4021 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝐵))) |
126 | 5, 7, 8, 9, 14, 11, 121 | tglinerflx1 25984 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ (𝑅𝐿𝐵)) |
127 | 5, 6, 7, 8, 9, 13,
122, 125, 59, 126, 12, 121, 44 | ragperp 26068 |
. . . . . . . 8
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵)) |
128 | 127 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵)) |
129 | 5, 6, 7, 8, 62, 120, 123, 128 | perpcom 26064 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
130 | 57, 2, 58, 60, 61, 119, 129 | reu2eqd 3617 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝐴 = 𝐵) |
131 | 55, 130 | mtand 806 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 = 𝐴) |
132 | 131 | neqned 2976 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 𝐴) |
133 | | mideulem2.7 |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝑃) |
134 | 132 | necomd 3024 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ 𝑋) |
135 | | eqid 2778 |
. . . . 5
⊢ (𝑆‘𝐴) = (𝑆‘𝐴) |
136 | | eqid 2778 |
. . . . 5
⊢ (𝑆‘𝑀) = (𝑆‘𝑀) |
137 | 5, 6, 7, 8, 27, 9,
10, 135, 17 | mircl 26012 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
138 | | mideulem2.4 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
139 | | mideulem2.5 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
140 | 83 | orcd 862 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
141 | 5, 8, 7, 9, 10, 11, 54, 140 | colcom 25909 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
142 | 5, 8, 7, 9, 11, 10, 54, 141 | colrot1 25910 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
143 | 5, 6, 7, 8, 27, 9,
11, 10, 17, 54, 96, 84, 142 | ragcol 26050 |
. . . . . 6
⊢ (𝜑 → 〈“𝑋𝐴𝑂”〉 ∈ (∟G‘𝐺)) |
144 | 5, 6, 7, 8, 27, 9,
54, 10, 17 | israg 26048 |
. . . . . 6
⊢ (𝜑 → (〈“𝑋𝐴𝑂”〉 ∈ (∟G‘𝐺) ↔ (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂)))) |
145 | 143, 144 | mpbid 224 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
146 | | mideulem2.6 |
. . . . . 6
⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑅)) |
147 | 146 | eqcomd 2784 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑅) = (𝑋 − 𝑍)) |
148 | | eqidd 2779 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐴)‘𝑂) = ((𝑆‘𝐴)‘𝑂)) |
149 | | mideulem2.8 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = ((𝑆‘𝑀)‘𝑍)) |
150 | 149 | eqcomd 2784 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑀)‘𝑍) = 𝑅) |
151 | 5, 6, 7, 8, 27, 9,
133, 136, 138, 150 | mircom 26014 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝑀)‘𝑅) = 𝑍) |
152 | 151 | eqcomd 2784 |
. . . . 5
⊢ (𝜑 → 𝑍 = ((𝑆‘𝑀)‘𝑅)) |
153 | 5, 6, 7, 8, 27, 9,
135, 136, 17, 137, 54, 14, 138, 10, 133, 79, 139, 145, 147, 148, 152 | krippen 26042 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐴𝐼𝑀)) |
154 | 5, 7, 8, 9, 10, 54, 133, 134, 153 | btwnlng3 25972 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝐴𝐿𝑋)) |
155 | 5, 7, 8, 9, 10, 11, 12, 54, 132, 83, 133, 154 | tglineeltr 25982 |
. 2
⊢ (𝜑 → 𝑀 ∈ (𝐴𝐿𝐵)) |
156 | 5, 6, 7, 8, 9, 13,
122, 127 | perpcom 26064 |
. 2
⊢ (𝜑 → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
157 | | nelne2 3068 |
. . . . . 6
⊢ ((𝑀 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑀 ≠ 𝑅) |
158 | 155, 51, 157 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → 𝑀 ≠ 𝑅) |
159 | 158 | necomd 3024 |
. . . 4
⊢ (𝜑 → 𝑅 ≠ 𝑀) |
160 | 5, 7, 8, 9, 14, 133, 159 | tgelrnln 25981 |
. . 3
⊢ (𝜑 → (𝑅𝐿𝑀) ∈ ran 𝐿) |
161 | 5, 7, 8, 9, 14, 133, 159 | tglinerflx2 25985 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑅𝐿𝑀)) |
162 | 155, 161 | elind 4021 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝑀))) |
163 | 5, 7, 8, 9, 14, 133, 159 | tglinerflx1 25984 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝑅𝐿𝑀)) |
164 | | simpr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 = 𝑋) |
165 | 9 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝐺 ∈ TarskiG) |
166 | 133 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ 𝑃) |
167 | 10 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝐴 ∈ 𝑃) |
168 | 17 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑂 ∈ 𝑃) |
169 | 137 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝐴)‘𝑂) ∈ 𝑃) |
170 | 145 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑋 − 𝑂) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
171 | 164 | oveq1d 6937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑂) = (𝑋 − 𝑂)) |
172 | 164 | oveq1d 6937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝐴)‘𝑂)) = (𝑋 − ((𝑆‘𝐴)‘𝑂))) |
173 | 170, 171,
172 | 3eqtr4rd 2825 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝐴)‘𝑂)) = (𝑀 − 𝑂)) |
174 | 138 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑍 ∈ 𝑃) |
175 | 14 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 ∈ 𝑃) |
176 | 149 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 = ((𝑆‘𝑀)‘𝑍)) |
177 | 176 | oveq2d 6938 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑅) = (𝑀 − ((𝑆‘𝑀)‘𝑍))) |
178 | 5, 6, 7, 8, 27, 165, 166, 136, 174 | mircgr 26008 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − ((𝑆‘𝑀)‘𝑍)) = (𝑀 − 𝑍)) |
179 | 177, 178 | eqtrd 2814 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑀 − 𝑅) = (𝑀 − 𝑍)) |
180 | 5, 6, 7, 165, 166, 175, 166, 174, 179 | tgcgrcomlr 25831 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → (𝑅 − 𝑀) = (𝑍 − 𝑀)) |
181 | 83 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (𝐴𝐿𝐵)) |
182 | 164, 181 | eqeltrd 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝐴𝐿𝐵)) |
183 | 51 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ¬ 𝑅 ∈ (𝐴𝐿𝐵)) |
184 | 182, 183,
157 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ≠ 𝑅) |
185 | 184 | necomd 3024 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑅 ≠ 𝑀) |
186 | 5, 6, 7, 165, 175, 166, 174, 166, 180, 185 | tgcgrneq 25834 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑍 ≠ 𝑀) |
187 | 5, 6, 7, 8, 27, 9,
133, 136, 138 | mirbtwn 26009 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (((𝑆‘𝑀)‘𝑍)𝐼𝑍)) |
188 | 149 | oveq1d 6937 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅𝐼𝑍) = (((𝑆‘𝑀)‘𝑍)𝐼𝑍)) |
189 | 187, 188 | eleqtrrd 2862 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (𝑅𝐼𝑍)) |
190 | 189 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑍)) |
191 | 5, 6, 7, 165, 175, 166, 174, 190 | tgbtwncom 25839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼𝑅)) |
192 | 139 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
193 | 164, 192 | eqeltrd 2859 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) |
194 | 5, 6, 7, 165, 169, 166, 174, 193 | tgbtwncom 25839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼((𝑆‘𝐴)‘𝑂))) |
195 | 78 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 ∈ (𝑅𝐼𝑂)) |
196 | 164, 195 | eqeltrd 2859 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑂)) |
197 | 5, 7, 165, 174, 166, 175, 169, 168, 186, 185, 191, 194, 196 | tgbtwnconn22 25930 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑂)) |
198 | 5, 6, 7, 8, 27, 165, 166, 136, 168, 169, 173, 197 | ismir 26010 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝐴)‘𝑂) = ((𝑆‘𝑀)‘𝑂)) |
199 | 198 | eqcomd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → ((𝑆‘𝑀)‘𝑂) = ((𝑆‘𝐴)‘𝑂)) |
200 | 5, 6, 7, 8, 27, 165, 166, 167, 168, 199 | miduniq1 26037 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑀 = 𝐴) |
201 | 164, 200 | eqtr3d 2816 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑋) → 𝑋 = 𝐴) |
202 | 131, 201 | mtand 806 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑀 = 𝑋) |
203 | 202 | neqned 2976 |
. . . . 5
⊢ (𝜑 → 𝑀 ≠ 𝑋) |
204 | 203 | necomd 3024 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 𝑀) |
205 | 151 | oveq2d 6938 |
. . . . . 6
⊢ (𝜑 → (𝑋 − ((𝑆‘𝑀)‘𝑅)) = (𝑋 − 𝑍)) |
206 | 205, 146 | eqtr2d 2815 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑅) = (𝑋 − ((𝑆‘𝑀)‘𝑅))) |
207 | 5, 6, 7, 8, 27, 9,
54, 133, 14 | israg 26048 |
. . . . 5
⊢ (𝜑 → (〈“𝑋𝑀𝑅”〉 ∈ (∟G‘𝐺) ↔ (𝑋 − 𝑅) = (𝑋 − ((𝑆‘𝑀)‘𝑅)))) |
208 | 206, 207 | mpbird 249 |
. . . 4
⊢ (𝜑 → 〈“𝑋𝑀𝑅”〉 ∈ (∟G‘𝐺)) |
209 | 5, 6, 7, 8, 9, 13,
160, 162, 83, 163, 204, 159, 208 | ragperp 26068 |
. . 3
⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝑀)) |
210 | 5, 6, 7, 8, 9, 13,
160, 209 | perpcom 26064 |
. 2
⊢ (𝜑 → (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵)) |
211 | 2, 4, 52, 53, 155, 156, 210 | reu2eqd 3617 |
1
⊢ (𝜑 → 𝐵 = 𝑀) |