Step | Hyp | Ref
| Expression |
1 | | oveq2 7413 |
. . 3
β’ (π¦ = π΅ β (π
πΏπ¦) = (π
πΏπ΅)) |
2 | 1 | breq1d 5157 |
. 2
β’ (π¦ = π΅ β ((π
πΏπ¦)(βGβπΊ)(π΄πΏπ΅) β (π
πΏπ΅)(βGβπΊ)(π΄πΏπ΅))) |
3 | | oveq2 7413 |
. . 3
β’ (π¦ = π β (π
πΏπ¦) = (π
πΏπ)) |
4 | 3 | breq1d 5157 |
. 2
β’ (π¦ = π β ((π
πΏπ¦)(βGβπΊ)(π΄πΏπ΅) β (π
πΏπ)(βGβπΊ)(π΄πΏπ΅))) |
5 | | colperpex.p |
. . 3
β’ π = (BaseβπΊ) |
6 | | colperpex.d |
. . 3
β’ β =
(distβπΊ) |
7 | | colperpex.i |
. . 3
β’ πΌ = (ItvβπΊ) |
8 | | colperpex.l |
. . 3
β’ πΏ = (LineGβπΊ) |
9 | | colperpex.g |
. . 3
β’ (π β πΊ β TarskiG) |
10 | | mideu.1 |
. . . 4
β’ (π β π΄ β π) |
11 | | mideu.2 |
. . . 4
β’ (π β π΅ β π) |
12 | | mideulem.1 |
. . . 4
β’ (π β π΄ β π΅) |
13 | 5, 7, 8, 9, 10, 11, 12 | tgelrnln 27870 |
. . 3
β’ (π β (π΄πΏπ΅) β ran πΏ) |
14 | | opphllem.1 |
. . 3
β’ (π β π
β π) |
15 | 12 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β π΄ β π΅) |
16 | 15 | neneqd 2945 |
. . . . 5
β’ ((π β§ π
β (π΄πΏπ΅)) β Β¬ π΄ = π΅) |
17 | | mideulem.3 |
. . . . . . . . 9
β’ (π β π β π) |
18 | | opphllem.3 |
. . . . . . . . 9
β’ (π β (π΄ β π) = (π΅ β π
)) |
19 | | mideulem.6 |
. . . . . . . . . . 11
β’ (π β (π΄πΏπ΅)(βGβπΊ)(π΄πΏπ)) |
20 | 8, 9, 19 | perpln2 27951 |
. . . . . . . . . 10
β’ (π β (π΄πΏπ) β ran πΏ) |
21 | 5, 7, 8, 9, 10, 17, 20 | tglnne 27868 |
. . . . . . . . 9
β’ (π β π΄ β π) |
22 | 5, 6, 7, 9, 10, 17, 11, 14, 18, 21 | tgcgrneq 27723 |
. . . . . . . 8
β’ (π β π΅ β π
) |
23 | 22 | adantr 481 |
. . . . . . 7
β’ ((π β§ π
β (π΄πΏπ΅)) β π΅ β π
) |
24 | 23 | necomd 2996 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β π
β π΅) |
25 | 24 | neneqd 2945 |
. . . . 5
β’ ((π β§ π
β (π΄πΏπ΅)) β Β¬ π
= π΅) |
26 | 16, 25 | jca 512 |
. . . 4
β’ ((π β§ π
β (π΄πΏπ΅)) β (Β¬ π΄ = π΅ β§ Β¬ π
= π΅)) |
27 | | mideu.s |
. . . . . 6
β’ π = (pInvGβπΊ) |
28 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β πΊ β TarskiG) |
29 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β π΄ β π) |
30 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β π΅ β π) |
31 | 14 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β π
β π) |
32 | | mideulem.2 |
. . . . . . . . 9
β’ (π β π β π) |
33 | | mideulem.5 |
. . . . . . . . . . . . 13
β’ (π β (π΄πΏπ΅)(βGβπΊ)(ππΏπ΅)) |
34 | 8, 9, 33 | perpln2 27951 |
. . . . . . . . . . . 12
β’ (π β (ππΏπ΅) β ran πΏ) |
35 | 5, 7, 8, 9, 32, 11, 34 | tglnne 27868 |
. . . . . . . . . . 11
β’ (π β π β π΅) |
36 | 5, 7, 8, 9, 32, 11, 35 | tglinerflx2 27874 |
. . . . . . . . . 10
β’ (π β π΅ β (ππΏπ΅)) |
37 | 5, 6, 7, 8, 9, 13,
34, 33 | perpcom 27953 |
. . . . . . . . . . 11
β’ (π β (ππΏπ΅)(βGβπΊ)(π΄πΏπ΅)) |
38 | 5, 7, 8, 9, 10, 11, 12 | tglinecom 27875 |
. . . . . . . . . . 11
β’ (π β (π΄πΏπ΅) = (π΅πΏπ΄)) |
39 | 37, 38 | breqtrd 5173 |
. . . . . . . . . 10
β’ (π β (ππΏπ΅)(βGβπΊ)(π΅πΏπ΄)) |
40 | 5, 6, 7, 8, 9, 32,
11, 36, 10, 39 | perprag 27966 |
. . . . . . . . 9
β’ (π β β¨βππ΅π΄ββ© β (βGβπΊ)) |
41 | | opphllem.2 |
. . . . . . . . . 10
β’ (π β π
β (π΅πΌπ)) |
42 | 5, 8, 7, 9, 11, 14, 32, 41 | btwncolg3 27797 |
. . . . . . . . 9
β’ (π β (π β (π΅πΏπ
) β¨ π΅ = π
)) |
43 | 5, 6, 7, 8, 27, 9,
32, 11, 10, 14, 40, 35, 42 | ragcol 27939 |
. . . . . . . 8
β’ (π β β¨βπ
π΅π΄ββ© β (βGβπΊ)) |
44 | 5, 6, 7, 8, 27, 9,
14, 11, 10, 43 | ragcom 27938 |
. . . . . . 7
β’ (π β β¨βπ΄π΅π
ββ© β (βGβπΊ)) |
45 | 44 | adantr 481 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β β¨βπ΄π΅π
ββ© β (βGβπΊ)) |
46 | | animorrl 979 |
. . . . . 6
β’ ((π β§ π
β (π΄πΏπ΅)) β (π
β (π΄πΏπ΅) β¨ π΄ = π΅)) |
47 | 5, 6, 7, 8, 27, 28, 29, 30, 31, 45, 46 | ragflat3 27946 |
. . . . 5
β’ ((π β§ π
β (π΄πΏπ΅)) β (π΄ = π΅ β¨ π
= π΅)) |
48 | | oran 988 |
. . . . 5
β’ ((π΄ = π΅ β¨ π
= π΅) β Β¬ (Β¬ π΄ = π΅ β§ Β¬ π
= π΅)) |
49 | 47, 48 | sylib 217 |
. . . 4
β’ ((π β§ π
β (π΄πΏπ΅)) β Β¬ (Β¬ π΄ = π΅ β§ Β¬ π
= π΅)) |
50 | 26, 49 | pm2.65da 815 |
. . 3
β’ (π β Β¬ π
β (π΄πΏπ΅)) |
51 | 5, 6, 7, 8, 9, 13,
14, 50 | foot 27962 |
. 2
β’ (π β β!π¦ β (π΄πΏπ΅)(π
πΏπ¦)(βGβπΊ)(π΄πΏπ΅)) |
52 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx2 27874 |
. 2
β’ (π β π΅ β (π΄πΏπ΅)) |
53 | | mideulem2.1 |
. . 3
β’ (π β π β π) |
54 | 12 | neneqd 2945 |
. . . . 5
β’ (π β Β¬ π΄ = π΅) |
55 | | oveq2 7413 |
. . . . . . 7
β’ (π¦ = π΄ β (π
πΏπ¦) = (π
πΏπ΄)) |
56 | 55 | breq1d 5157 |
. . . . . 6
β’ (π¦ = π΄ β ((π
πΏπ¦)(βGβπΊ)(π΄πΏπ΅) β (π
πΏπ΄)(βGβπΊ)(π΄πΏπ΅))) |
57 | 51 | adantr 481 |
. . . . . 6
β’ ((π β§ π = π΄) β β!π¦ β (π΄πΏπ΅)(π
πΏπ¦)(βGβπΊ)(π΄πΏπ΅)) |
58 | 5, 7, 8, 9, 10, 11, 12 | tglinerflx1 27873 |
. . . . . . 7
β’ (π β π΄ β (π΄πΏπ΅)) |
59 | 58 | adantr 481 |
. . . . . 6
β’ ((π β§ π = π΄) β π΄ β (π΄πΏπ΅)) |
60 | 52 | adantr 481 |
. . . . . 6
β’ ((π β§ π = π΄) β π΅ β (π΄πΏπ΅)) |
61 | 9 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β πΊ β TarskiG) |
62 | 14 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π
β π) |
63 | 10 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π΄ β π) |
64 | 50, 54 | jca 512 |
. . . . . . . . . . . 12
β’ (π β (Β¬ π
β (π΄πΏπ΅) β§ Β¬ π΄ = π΅)) |
65 | | pm4.56 987 |
. . . . . . . . . . . 12
β’ ((Β¬
π
β (π΄πΏπ΅) β§ Β¬ π΄ = π΅) β Β¬ (π
β (π΄πΏπ΅) β¨ π΄ = π΅)) |
66 | 64, 65 | sylib 217 |
. . . . . . . . . . 11
β’ (π β Β¬ (π
β (π΄πΏπ΅) β¨ π΄ = π΅)) |
67 | 5, 7, 8, 9, 14, 10, 11, 66 | ncolne1 27865 |
. . . . . . . . . 10
β’ (π β π
β π΄) |
68 | 67 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π
β π΄) |
69 | 5, 7, 8, 61, 62, 63, 68 | tglinecom 27875 |
. . . . . . . 8
β’ ((π β§ π = π΄) β (π
πΏπ΄) = (π΄πΏπ
)) |
70 | 68 | necomd 2996 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π΄ β π
) |
71 | 17 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π β π) |
72 | 21 | necomd 2996 |
. . . . . . . . . 10
β’ (π β π β π΄) |
73 | 72 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π β π΄) |
74 | 53 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π = π΄) β π β π) |
75 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π β§ π = π΄) β π = π΄) |
76 | 75, 70 | eqnetrd 3008 |
. . . . . . . . . . 11
β’ ((π β§ π = π΄) β π β π
) |
77 | | mideulem2.3 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (π
πΌπ)) |
78 | 5, 6, 7, 9, 14, 53, 17, 77 | tgbtwncom 27728 |
. . . . . . . . . . . . . . 15
β’ (π β π β (ππΌπ
)) |
79 | | mideulem.4 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β π) |
80 | | mideulem.7 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β (π΄πΏπ΅)) |
81 | | mideulem2.2 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β (ππΌπ΅)) |
82 | 5, 7, 8, 9, 79, 10, 11, 53, 80, 81 | coltr3 27888 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (π΄πΏπ΅)) |
83 | 12 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π΅ β π΄) |
84 | 83 | neneqd 2945 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β Β¬ π΅ = π΄) |
85 | 84 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (π΅πΏπ΄)) β Β¬ π΅ = π΄) |
86 | 72 | neneqd 2945 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β Β¬ π = π΄) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (π΅πΏπ΄)) β Β¬ π = π΄) |
88 | 85, 87 | jca 512 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (π΅πΏπ΄)) β (Β¬ π΅ = π΄ β§ Β¬ π = π΄)) |
89 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β πΊ β TarskiG) |
90 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β π΅ β π) |
91 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β π΄ β π) |
92 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β π β π) |
93 | 5, 7, 8, 9, 11, 10, 83 | tglinerflx2 27874 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β π΄ β (π΅πΏπ΄)) |
94 | 38, 19 | eqbrtrrd 5171 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (π΅πΏπ΄)(βGβπΊ)(π΄πΏπ)) |
95 | 5, 6, 7, 8, 9, 11,
10, 93, 17, 94 | perprag 27966 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β β¨βπ΅π΄πββ© β (βGβπΊ)) |
96 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β β¨βπ΅π΄πββ© β (βGβπΊ)) |
97 | | animorrl 979 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (π΅πΏπ΄)) β (π β (π΅πΏπ΄) β¨ π΅ = π΄)) |
98 | 5, 6, 7, 8, 27, 89, 90, 91, 92, 96, 97 | ragflat3 27946 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (π΅πΏπ΄)) β (π΅ = π΄ β¨ π = π΄)) |
99 | | oran 988 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π΅ = π΄ β¨ π = π΄) β Β¬ (Β¬ π΅ = π΄ β§ Β¬ π = π΄)) |
100 | 98, 99 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (π΅πΏπ΄)) β Β¬ (Β¬ π΅ = π΄ β§ Β¬ π = π΄)) |
101 | 88, 100 | pm2.65da 815 |
. . . . . . . . . . . . . . . . 17
β’ (π β Β¬ π β (π΅πΏπ΄)) |
102 | 101, 38 | neleqtrrd 2856 |
. . . . . . . . . . . . . . . 16
β’ (π β Β¬ π β (π΄πΏπ΅)) |
103 | | nelne2 3040 |
. . . . . . . . . . . . . . . 16
β’ ((π β (π΄πΏπ΅) β§ Β¬ π β (π΄πΏπ΅)) β π β π) |
104 | 82, 102, 103 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (π β π β π) |
105 | 5, 6, 7, 9, 17, 53, 14, 78, 104 | tgbtwnne 27730 |
. . . . . . . . . . . . . 14
β’ (π β π β π
) |
106 | 105 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π΄) β π β π
) |
107 | 106 | necomd 2996 |
. . . . . . . . . . . 12
β’ ((π β§ π = π΄) β π
β π) |
108 | 77 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π = π΄) β π β (π
πΌπ)) |
109 | 5, 7, 8, 61, 62, 71, 74, 107, 108 | btwnlng1 27859 |
. . . . . . . . . . 11
β’ ((π β§ π = π΄) β π β (π
πΏπ)) |
110 | 5, 7, 8, 61, 74, 62, 71, 76, 109, 107 | lnrot2 27864 |
. . . . . . . . . 10
β’ ((π β§ π = π΄) β π β (ππΏπ
)) |
111 | 75 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ π = π΄) β (ππΏπ
) = (π΄πΏπ
)) |
112 | 110, 111 | eleqtrd 2835 |
. . . . . . . . 9
β’ ((π β§ π = π΄) β π β (π΄πΏπ
)) |
113 | 5, 7, 8, 61, 63, 62, 70, 71, 73, 112 | tglineelsb2 27872 |
. . . . . . . 8
β’ ((π β§ π = π΄) β (π΄πΏπ
) = (π΄πΏπ)) |
114 | 69, 113 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π = π΄) β (π
πΏπ΄) = (π΄πΏπ)) |
115 | 5, 6, 7, 8, 9, 13,
20, 19 | perpcom 27953 |
. . . . . . . 8
β’ (π β (π΄πΏπ)(βGβπΊ)(π΄πΏπ΅)) |
116 | 115 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π΄) β (π΄πΏπ)(βGβπΊ)(π΄πΏπ΅)) |
117 | 114, 116 | eqbrtrd 5169 |
. . . . . 6
β’ ((π β§ π = π΄) β (π
πΏπ΄)(βGβπΊ)(π΄πΏπ΅)) |
118 | 13 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π΄) β (π΄πΏπ΅) β ran πΏ) |
119 | 22 | necomd 2996 |
. . . . . . . . 9
β’ (π β π
β π΅) |
120 | 5, 7, 8, 9, 14, 11, 119 | tgelrnln 27870 |
. . . . . . . 8
β’ (π β (π
πΏπ΅) β ran πΏ) |
121 | 120 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π΄) β (π
πΏπ΅) β ran πΏ) |
122 | 5, 7, 8, 9, 14, 11, 119 | tglinerflx2 27874 |
. . . . . . . . . 10
β’ (π β π΅ β (π
πΏπ΅)) |
123 | 52, 122 | elind 4193 |
. . . . . . . . 9
β’ (π β π΅ β ((π΄πΏπ΅) β© (π
πΏπ΅))) |
124 | 5, 7, 8, 9, 14, 11, 119 | tglinerflx1 27873 |
. . . . . . . . 9
β’ (π β π
β (π
πΏπ΅)) |
125 | 5, 6, 7, 8, 9, 13,
120, 123, 58, 124, 12, 119, 44 | ragperp 27957 |
. . . . . . . 8
β’ (π β (π΄πΏπ΅)(βGβπΊ)(π
πΏπ΅)) |
126 | 125 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π΄) β (π΄πΏπ΅)(βGβπΊ)(π
πΏπ΅)) |
127 | 5, 6, 7, 8, 61, 118, 121, 126 | perpcom 27953 |
. . . . . 6
β’ ((π β§ π = π΄) β (π
πΏπ΅)(βGβπΊ)(π΄πΏπ΅)) |
128 | 56, 2, 57, 59, 60, 117, 127 | reu2eqd 3731 |
. . . . 5
β’ ((π β§ π = π΄) β π΄ = π΅) |
129 | 54, 128 | mtand 814 |
. . . 4
β’ (π β Β¬ π = π΄) |
130 | 129 | neqned 2947 |
. . 3
β’ (π β π β π΄) |
131 | | mideulem2.7 |
. . 3
β’ (π β π β π) |
132 | 130 | necomd 2996 |
. . . 4
β’ (π β π΄ β π) |
133 | | eqid 2732 |
. . . . 5
β’ (πβπ΄) = (πβπ΄) |
134 | | eqid 2732 |
. . . . 5
β’ (πβπ) = (πβπ) |
135 | 5, 6, 7, 8, 27, 9,
10, 133, 17 | mircl 27901 |
. . . . 5
β’ (π β ((πβπ΄)βπ) β π) |
136 | | mideulem2.4 |
. . . . 5
β’ (π β π β π) |
137 | | mideulem2.5 |
. . . . 5
β’ (π β π β (((πβπ΄)βπ)πΌπ)) |
138 | 82 | orcd 871 |
. . . . . . . . 9
β’ (π β (π β (π΄πΏπ΅) β¨ π΄ = π΅)) |
139 | 5, 8, 7, 9, 10, 11, 53, 138 | colcom 27798 |
. . . . . . . 8
β’ (π β (π β (π΅πΏπ΄) β¨ π΅ = π΄)) |
140 | 5, 8, 7, 9, 11, 10, 53, 139 | colrot1 27799 |
. . . . . . 7
β’ (π β (π΅ β (π΄πΏπ) β¨ π΄ = π)) |
141 | 5, 6, 7, 8, 27, 9,
11, 10, 17, 53, 95, 83, 140 | ragcol 27939 |
. . . . . 6
β’ (π β β¨βππ΄πββ© β (βGβπΊ)) |
142 | 5, 6, 7, 8, 27, 9,
53, 10, 17 | israg 27937 |
. . . . . 6
β’ (π β (β¨βππ΄πββ© β (βGβπΊ) β (π β π) = (π β ((πβπ΄)βπ)))) |
143 | 141, 142 | mpbid 231 |
. . . . 5
β’ (π β (π β π) = (π β ((πβπ΄)βπ))) |
144 | | mideulem2.6 |
. . . . . 6
β’ (π β (π β π) = (π β π
)) |
145 | 144 | eqcomd 2738 |
. . . . 5
β’ (π β (π β π
) = (π β π)) |
146 | | eqidd 2733 |
. . . . 5
β’ (π β ((πβπ΄)βπ) = ((πβπ΄)βπ)) |
147 | | mideulem2.8 |
. . . . . . . 8
β’ (π β π
= ((πβπ)βπ)) |
148 | 147 | eqcomd 2738 |
. . . . . . 7
β’ (π β ((πβπ)βπ) = π
) |
149 | 5, 6, 7, 8, 27, 9,
131, 134, 136, 148 | mircom 27903 |
. . . . . 6
β’ (π β ((πβπ)βπ
) = π) |
150 | 149 | eqcomd 2738 |
. . . . 5
β’ (π β π = ((πβπ)βπ
)) |
151 | 5, 6, 7, 8, 27, 9,
133, 134, 17, 135, 53, 14, 136, 10, 131, 78, 137, 143, 145, 146, 150 | krippen 27931 |
. . . 4
β’ (π β π β (π΄πΌπ)) |
152 | 5, 7, 8, 9, 10, 53, 131, 132, 151 | btwnlng3 27861 |
. . 3
β’ (π β π β (π΄πΏπ)) |
153 | 5, 7, 8, 9, 10, 11, 12, 53, 130, 82, 131, 152 | tglineeltr 27871 |
. 2
β’ (π β π β (π΄πΏπ΅)) |
154 | 5, 6, 7, 8, 9, 13,
120, 125 | perpcom 27953 |
. 2
β’ (π β (π
πΏπ΅)(βGβπΊ)(π΄πΏπ΅)) |
155 | | nelne2 3040 |
. . . . . 6
β’ ((π β (π΄πΏπ΅) β§ Β¬ π
β (π΄πΏπ΅)) β π β π
) |
156 | 153, 50, 155 | syl2anc 584 |
. . . . 5
β’ (π β π β π
) |
157 | 156 | necomd 2996 |
. . . 4
β’ (π β π
β π) |
158 | 5, 7, 8, 9, 14, 131, 157 | tgelrnln 27870 |
. . 3
β’ (π β (π
πΏπ) β ran πΏ) |
159 | 5, 7, 8, 9, 14, 131, 157 | tglinerflx2 27874 |
. . . . 5
β’ (π β π β (π
πΏπ)) |
160 | 153, 159 | elind 4193 |
. . . 4
β’ (π β π β ((π΄πΏπ΅) β© (π
πΏπ))) |
161 | 5, 7, 8, 9, 14, 131, 157 | tglinerflx1 27873 |
. . . 4
β’ (π β π
β (π
πΏπ)) |
162 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π = π) β π = π) |
163 | 9 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π) β πΊ β TarskiG) |
164 | 131 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π) β π β π) |
165 | 10 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π) β π΄ β π) |
166 | 17 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π) β π β π) |
167 | 135 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π = π) β ((πβπ΄)βπ) β π) |
168 | 143 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β (π β π) = (π β ((πβπ΄)βπ))) |
169 | 162 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β (π β π) = (π β π)) |
170 | 162 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β (π β ((πβπ΄)βπ)) = (π β ((πβπ΄)βπ))) |
171 | 168, 169,
170 | 3eqtr4rd 2783 |
. . . . . . . . . . 11
β’ ((π β§ π = π) β (π β ((πβπ΄)βπ)) = (π β π)) |
172 | 136 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β π) |
173 | 14 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π
β π) |
174 | 147 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π = π) β π
= ((πβπ)βπ)) |
175 | 174 | oveq2d 7421 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β (π β π
) = (π β ((πβπ)βπ))) |
176 | 5, 6, 7, 8, 27, 163, 164, 134, 172 | mircgr 27897 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β (π β ((πβπ)βπ)) = (π β π)) |
177 | 175, 176 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = π) β (π β π
) = (π β π)) |
178 | 5, 6, 7, 163, 164, 173, 164, 172, 177 | tgcgrcomlr 27720 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β (π
β π) = (π β π)) |
179 | 82 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π = π) β π β (π΄πΏπ΅)) |
180 | 162, 179 | eqeltrd 2833 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β π β (π΄πΏπ΅)) |
181 | 50 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β Β¬ π
β (π΄πΏπ΅)) |
182 | 180, 181,
155 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = π) β π β π
) |
183 | 182 | necomd 2996 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π
β π) |
184 | 5, 6, 7, 163, 173, 164, 172, 164, 178, 183 | tgcgrneq 27723 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β π) |
185 | 5, 6, 7, 8, 27, 9,
131, 134, 136 | mirbtwn 27898 |
. . . . . . . . . . . . . . 15
β’ (π β π β (((πβπ)βπ)πΌπ)) |
186 | 147 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (π β (π
πΌπ) = (((πβπ)βπ)πΌπ)) |
187 | 185, 186 | eleqtrrd 2836 |
. . . . . . . . . . . . . 14
β’ (π β π β (π
πΌπ)) |
188 | 187 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π β (π
πΌπ)) |
189 | 5, 6, 7, 163, 173, 164, 172, 188 | tgbtwncom 27728 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β (ππΌπ
)) |
190 | 137 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = π) β π β (((πβπ΄)βπ)πΌπ)) |
191 | 162, 190 | eqeltrd 2833 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π β (((πβπ΄)βπ)πΌπ)) |
192 | 5, 6, 7, 163, 167, 164, 172, 191 | tgbtwncom 27728 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β (ππΌ((πβπ΄)βπ))) |
193 | 77 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π β (π
πΌπ)) |
194 | 162, 193 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β (π
πΌπ)) |
195 | 5, 7, 163, 172, 164, 173, 167, 166, 184, 183, 189, 192, 194 | tgbtwnconn22 27819 |
. . . . . . . . . . 11
β’ ((π β§ π = π) β π β (((πβπ΄)βπ)πΌπ)) |
196 | 5, 6, 7, 8, 27, 163, 164, 134, 166, 167, 171, 195 | ismir 27899 |
. . . . . . . . . 10
β’ ((π β§ π = π) β ((πβπ΄)βπ) = ((πβπ)βπ)) |
197 | 196 | eqcomd 2738 |
. . . . . . . . 9
β’ ((π β§ π = π) β ((πβπ)βπ) = ((πβπ΄)βπ)) |
198 | 5, 6, 7, 8, 27, 163, 164, 165, 166, 197 | miduniq1 27926 |
. . . . . . . 8
β’ ((π β§ π = π) β π = π΄) |
199 | 162, 198 | eqtr3d 2774 |
. . . . . . 7
β’ ((π β§ π = π) β π = π΄) |
200 | 129, 199 | mtand 814 |
. . . . . 6
β’ (π β Β¬ π = π) |
201 | 200 | neqned 2947 |
. . . . 5
β’ (π β π β π) |
202 | 201 | necomd 2996 |
. . . 4
β’ (π β π β π) |
203 | 149 | oveq2d 7421 |
. . . . . 6
β’ (π β (π β ((πβπ)βπ
)) = (π β π)) |
204 | 203, 144 | eqtr2d 2773 |
. . . . 5
β’ (π β (π β π
) = (π β ((πβπ)βπ
))) |
205 | 5, 6, 7, 8, 27, 9,
53, 131, 14 | israg 27937 |
. . . . 5
β’ (π β (β¨βπππ
ββ© β (βGβπΊ) β (π β π
) = (π β ((πβπ)βπ
)))) |
206 | 204, 205 | mpbird 256 |
. . . 4
β’ (π β β¨βπππ
ββ© β (βGβπΊ)) |
207 | 5, 6, 7, 8, 9, 13,
158, 160, 82, 161, 202, 157, 206 | ragperp 27957 |
. . 3
β’ (π β (π΄πΏπ΅)(βGβπΊ)(π
πΏπ)) |
208 | 5, 6, 7, 8, 9, 13,
158, 207 | perpcom 27953 |
. 2
β’ (π β (π
πΏπ)(βGβπΊ)(π΄πΏπ΅)) |
209 | 2, 4, 51, 52, 153, 154, 208 | reu2eqd 3731 |
1
β’ (π β π΅ = π) |