Step | Hyp | Ref
| Expression |
1 | | simpll1 1211 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝑅 ∈ TosetRel ) |
2 | | simpll3 1213 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ 𝑋) |
3 | | ordthauslem.1 |
. . . . . . 7
⊢ 𝑋 = dom 𝑅 |
4 | 3 | ordtopn2 22346 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
5 | 1, 2, 4 | syl2anc 584 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
6 | | simpll2 1212 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ 𝑋) |
7 | 3 | ordtopn1 22345 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
8 | 1, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
9 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐵𝑅𝑥 ↔ 𝐵𝑅𝐴)) |
10 | 9 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐴)) |
11 | | simprr 770 |
. . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ≠ 𝐵) |
12 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ TosetRel ) |
13 | | tsrps 18305 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) |
14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ PosetRel) |
15 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴𝑅𝐵) |
16 | | psasym 18294 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
17 | 16 | 3expia 1120 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) |
18 | 14, 15, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) |
19 | 18 | necon3ad 2956 |
. . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐴 ≠ 𝐵 → ¬ 𝐵𝑅𝐴)) |
20 | 11, 19 | mpd 15 |
. . . . . . 7
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ¬ 𝐵𝑅𝐴) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ¬ 𝐵𝑅𝐴) |
22 | 10, 6, 21 | elrabd 3626 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) |
23 | | breq1 5077 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐴 ↔ 𝐵𝑅𝐴)) |
24 | 23 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐴 ↔ ¬ 𝐵𝑅𝐴)) |
25 | 24, 2, 21 | elrabd 3626 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) |
26 | | simpr 485 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) |
27 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥})) |
28 | | ineq1 4139 |
. . . . . . . 8
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝑚 ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛)) |
29 | 28 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅)) |
30 | 27, 29 | 3anbi13d 1437 |
. . . . . 6
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅))) |
31 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) |
32 | | ineq2 4140 |
. . . . . . . . 9
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) |
33 | | inrab 4240 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} |
34 | 32, 33 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)}) |
35 | 34 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅ ↔ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) |
36 | 31, 35 | 3anbi23d 1438 |
. . . . . 6
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ((𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅))) |
37 | 30, 36 | rspc2ev 3572 |
. . . . 5
⊢ (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
38 | 5, 8, 22, 25, 26, 37 | syl113anc 1381 |
. . . 4
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
39 | 38 | ex 413 |
. . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
40 | | rabn0 4319 |
. . . 4
⊢ ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)) |
41 | | simpll1 1211 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑅 ∈ TosetRel ) |
42 | | simprl 768 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑥 ∈ 𝑋) |
43 | 3 | ordtopn2 22346 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
44 | 41, 42, 43 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
45 | 3 | ordtopn1 22345 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
46 | 41, 42, 45 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
47 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐴)) |
48 | 47 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐴)) |
49 | | simpll2 1212 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ 𝑋) |
50 | | simprrr 779 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝑥𝑅𝐴) |
51 | 48, 49, 50 | elrabd 3626 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
52 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝐵𝑅𝑥)) |
53 | 52 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝐵𝑅𝑥)) |
54 | | simpll3 1213 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ 𝑋) |
55 | | simprrl 778 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝐵𝑅𝑥) |
56 | 53, 54, 55 | elrabd 3626 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
57 | 41, 42 | jca 512 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → (𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋)) |
58 | 3 | tsrlin 18303 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
59 | 58 | 3expa 1117 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
60 | 57, 59 | sylan 580 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
61 | | oran 987 |
. . . . . . . . 9
⊢ ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
62 | 60, 61 | sylib 217 |
. . . . . . . 8
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
63 | 62 | ralrimiva 3103 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
64 | | rabeq0 4318 |
. . . . . . 7
⊢ ({𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅ ↔ ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
65 | 63, 64 | sylibr 233 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅) |
66 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) |
67 | | ineq1 4139 |
. . . . . . . . 9
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝑚 ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛)) |
68 | 67 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅)) |
69 | 66, 68 | 3anbi13d 1437 |
. . . . . . 7
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅))) |
70 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
71 | | ineq2 4140 |
. . . . . . . . . 10
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
72 | | inrab 4240 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} |
73 | 71, 72 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)}) |
74 | 73 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅ ↔ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) |
75 | 70, 74 | 3anbi23d 1438 |
. . . . . . 7
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ((𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅))) |
76 | 69, 75 | rspc2ev 3572 |
. . . . . 6
⊢ (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅) ∧ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
77 | 44, 46, 51, 56, 65, 76 | syl113anc 1381 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
78 | 77 | rexlimdvaa 3214 |
. . . 4
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
79 | 40, 78 | syl5bi 241 |
. . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
80 | 39, 79 | pm2.61dne 3031 |
. 2
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
81 | 80 | exp32 421 |
1
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |