| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll1 1212 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝑅 ∈ TosetRel ) | 
| 2 |  | simpll3 1214 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ 𝑋) | 
| 3 |  | ordthauslem.1 | . . . . . . 7
⊢ 𝑋 = dom 𝑅 | 
| 4 | 3 | ordtopn2 23204 | . . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 5 | 1, 2, 4 | syl2anc 584 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 6 |  | simpll2 1213 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ 𝑋) | 
| 7 | 3 | ordtopn1 23203 | . . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) | 
| 8 | 1, 6, 7 | syl2anc 584 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) | 
| 9 |  | breq2 5146 | . . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐵𝑅𝑥 ↔ 𝐵𝑅𝐴)) | 
| 10 | 9 | notbid 318 | . . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐴)) | 
| 11 |  | simprr 772 | . . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ≠ 𝐵) | 
| 12 |  | simpl1 1191 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ TosetRel ) | 
| 13 |  | tsrps 18633 | . . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) | 
| 14 | 12, 13 | syl 17 | . . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ PosetRel) | 
| 15 |  | simprl 770 | . . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴𝑅𝐵) | 
| 16 |  | psasym 18622 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) | 
| 17 | 16 | 3expia 1121 | . . . . . . . . . 10
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) | 
| 18 | 14, 15, 17 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) | 
| 19 | 18 | necon3ad 2952 | . . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐴 ≠ 𝐵 → ¬ 𝐵𝑅𝐴)) | 
| 20 | 11, 19 | mpd 15 | . . . . . . 7
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ¬ 𝐵𝑅𝐴) | 
| 21 | 20 | adantr 480 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ¬ 𝐵𝑅𝐴) | 
| 22 | 10, 6, 21 | elrabd 3693 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) | 
| 23 |  | breq1 5145 | . . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐴 ↔ 𝐵𝑅𝐴)) | 
| 24 | 23 | notbid 318 | . . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐴 ↔ ¬ 𝐵𝑅𝐴)) | 
| 25 | 24, 2, 21 | elrabd 3693 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) | 
| 26 |  | simpr 484 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) | 
| 27 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥})) | 
| 28 |  | ineq1 4212 | . . . . . . . 8
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝑚 ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛)) | 
| 29 | 28 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅)) | 
| 30 | 27, 29 | 3anbi13d 1439 | . . . . . 6
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅))) | 
| 31 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) | 
| 32 |  | ineq2 4213 | . . . . . . . . 9
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) | 
| 33 |  | inrab 4315 | . . . . . . . . 9
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} | 
| 34 | 32, 33 | eqtrdi 2792 | . . . . . . . 8
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)}) | 
| 35 | 34 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅ ↔ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) | 
| 36 | 31, 35 | 3anbi23d 1440 | . . . . . 6
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ((𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅))) | 
| 37 | 30, 36 | rspc2ev 3634 | . . . . 5
⊢ (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 38 | 5, 8, 22, 25, 26, 37 | syl113anc 1383 | . . . 4
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 39 | 38 | ex 412 | . . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 40 |  | rabn0 4388 | . . . 4
⊢ ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)) | 
| 41 |  | simpll1 1212 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑅 ∈ TosetRel ) | 
| 42 |  | simprl 770 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑥 ∈ 𝑋) | 
| 43 | 3 | ordtopn2 23204 | . . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) | 
| 44 | 41, 42, 43 | syl2anc 584 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) | 
| 45 | 3 | ordtopn1 23203 | . . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 46 | 41, 42, 45 | syl2anc 584 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 47 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐴)) | 
| 48 | 47 | notbid 318 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐴)) | 
| 49 |  | simpll2 1213 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ 𝑋) | 
| 50 |  | simprrr 781 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝑥𝑅𝐴) | 
| 51 | 48, 49, 50 | elrabd 3693 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) | 
| 52 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝐵𝑅𝑥)) | 
| 53 | 52 | notbid 318 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝐵𝑅𝑥)) | 
| 54 |  | simpll3 1214 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ 𝑋) | 
| 55 |  | simprrl 780 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝐵𝑅𝑥) | 
| 56 | 53, 54, 55 | elrabd 3693 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) | 
| 57 | 41, 42 | jca 511 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → (𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋)) | 
| 58 | 3 | tsrlin 18631 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | 
| 59 | 58 | 3expa 1118 | . . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | 
| 60 | 57, 59 | sylan 580 | . . . . . . . . 9
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | 
| 61 |  | oran 991 | . . . . . . . . 9
⊢ ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) | 
| 62 | 60, 61 | sylib 218 | . . . . . . . 8
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) | 
| 63 | 62 | ralrimiva 3145 | . . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) | 
| 64 |  | rabeq0 4387 | . . . . . . 7
⊢ ({𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅ ↔ ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) | 
| 65 | 63, 64 | sylibr 234 | . . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅) | 
| 66 |  | eleq2 2829 | . . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) | 
| 67 |  | ineq1 4212 | . . . . . . . . 9
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝑚 ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛)) | 
| 68 | 67 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅)) | 
| 69 | 66, 68 | 3anbi13d 1439 | . . . . . . 7
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅))) | 
| 70 |  | eleq2 2829 | . . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 71 |  | ineq2 4213 | . . . . . . . . . 10
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 72 |  | inrab 4315 | . . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} | 
| 73 | 71, 72 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)}) | 
| 74 | 73 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅ ↔ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) | 
| 75 | 70, 74 | 3anbi23d 1440 | . . . . . . 7
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ((𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅))) | 
| 76 | 69, 75 | rspc2ev 3634 | . . . . . 6
⊢ (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅) ∧ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 77 | 44, 46, 51, 56, 65, 76 | syl113anc 1383 | . . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 78 | 77 | rexlimdvaa 3155 | . . . 4
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 79 | 40, 78 | biimtrid 242 | . . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 80 | 39, 79 | pm2.61dne 3027 | . 2
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 81 | 80 | exp32 420 | 1
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |