| Step | Hyp | Ref
| Expression |
| 1 | | simpll1 1213 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝑅 ∈ TosetRel ) |
| 2 | | simpll3 1215 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ 𝑋) |
| 3 | | ordthauslem.1 |
. . . . . . 7
⊢ 𝑋 = dom 𝑅 |
| 4 | 3 | ordtopn2 23138 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 5 | 1, 2, 4 | syl2anc 584 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 6 | | simpll2 1214 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ 𝑋) |
| 7 | 3 | ordtopn1 23137 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 8 | 1, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 9 | | breq2 5128 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐵𝑅𝑥 ↔ 𝐵𝑅𝐴)) |
| 10 | 9 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐴)) |
| 11 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ≠ 𝐵) |
| 12 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ TosetRel ) |
| 13 | | tsrps 18602 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝑅 ∈ PosetRel) |
| 15 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → 𝐴𝑅𝐵) |
| 16 | | psasym 18591 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
| 17 | 16 | 3expia 1121 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) |
| 18 | 14, 15, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐵𝑅𝐴 → 𝐴 = 𝐵)) |
| 19 | 18 | necon3ad 2946 |
. . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (𝐴 ≠ 𝐵 → ¬ 𝐵𝑅𝐴)) |
| 20 | 11, 19 | mpd 15 |
. . . . . . 7
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ¬ 𝐵𝑅𝐴) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ¬ 𝐵𝑅𝐴) |
| 22 | 10, 6, 21 | elrabd 3678 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) |
| 23 | | breq1 5127 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐴 ↔ 𝐵𝑅𝐴)) |
| 24 | 23 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐴 ↔ ¬ 𝐵𝑅𝐴)) |
| 25 | 24, 2, 21 | elrabd 3678 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) |
| 26 | | simpr 484 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) |
| 27 | | eleq2 2824 |
. . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥})) |
| 28 | | ineq1 4193 |
. . . . . . . 8
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝑚 ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛)) |
| 29 | 28 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅)) |
| 30 | 27, 29 | 3anbi13d 1440 |
. . . . . 6
⊢ (𝑚 = {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅))) |
| 31 | | eleq2 2824 |
. . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) |
| 32 | | ineq2 4194 |
. . . . . . . . 9
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴})) |
| 33 | | inrab 4296 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} |
| 34 | 32, 33 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)}) |
| 35 | 34 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅ ↔ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) |
| 36 | 31, 35 | 3anbi23d 1441 |
. . . . . 6
⊢ (𝑛 = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} → ((𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅))) |
| 37 | 30, 36 | rspc2ev 3619 |
. . . . 5
⊢ (({𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 38 | 5, 8, 22, 25, 26, 37 | syl113anc 1384 |
. . . 4
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ {𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 39 | 38 | ex 412 |
. . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 40 | | rabn0 4369 |
. . . 4
⊢ ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)) |
| 41 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑅 ∈ TosetRel ) |
| 42 | | simprl 770 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑥 ∈ 𝑋) |
| 43 | 3 | ordtopn2 23138 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 44 | 41, 42, 43 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 45 | 3 | ordtopn1 23137 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 46 | 41, 42, 45 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 47 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐴)) |
| 48 | 47 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐴)) |
| 49 | | simpll2 1214 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ 𝑋) |
| 50 | | simprrr 781 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝑥𝑅𝐴) |
| 51 | 48, 49, 50 | elrabd 3678 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
| 52 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝐵𝑅𝑥)) |
| 53 | 52 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝐵𝑅𝑥)) |
| 54 | | simpll3 1215 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ 𝑋) |
| 55 | | simprrl 780 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝐵𝑅𝑥) |
| 56 | 53, 54, 55 | elrabd 3678 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
| 57 | 41, 42 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → (𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋)) |
| 58 | 3 | tsrlin 18600 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 59 | 58 | 3expa 1118 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 60 | 57, 59 | sylan 580 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 61 | | oran 991 |
. . . . . . . . 9
⊢ ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
| 62 | 60, 61 | sylib 218 |
. . . . . . . 8
⊢
(((((𝑅 ∈
TosetRel ∧ 𝐴 ∈
𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦 ∈ 𝑋) → ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
| 63 | 62 | ralrimiva 3133 |
. . . . . . 7
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
| 64 | | rabeq0 4368 |
. . . . . . 7
⊢ ({𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅ ↔ ∀𝑦 ∈ 𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)) |
| 65 | 63, 64 | sylibr 234 |
. . . . . 6
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅) |
| 66 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝐴 ∈ 𝑚 ↔ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) |
| 67 | | ineq1 4193 |
. . . . . . . . 9
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝑚 ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛)) |
| 68 | 67 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝑚 ∩ 𝑛) = ∅ ↔ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅)) |
| 69 | 66, 68 | 3anbi13d 1440 |
. . . . . . 7
⊢ (𝑚 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅))) |
| 70 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (𝐵 ∈ 𝑛 ↔ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 71 | | ineq2 4194 |
. . . . . . . . . 10
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 72 | | inrab 4296 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} |
| 73 | 71, 72 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)}) |
| 74 | 73 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅ ↔ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) |
| 75 | 70, 74 | 3anbi23d 1441 |
. . . . . . 7
⊢ (𝑛 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} → ((𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ 𝑛 ∧ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅))) |
| 76 | 69, 75 | rspc2ev 3619 |
. . . . . 6
⊢ (({𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅) ∧ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 77 | 44, 46, 51, 56, 65, 76 | syl113anc 1384 |
. . . . 5
⊢ ((((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑥 ∈ 𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 78 | 77 | rexlimdvaa 3143 |
. . . 4
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → (∃𝑥 ∈ 𝑋 (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 79 | 40, 78 | biimtrid 242 |
. . 3
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ({𝑥 ∈ 𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 80 | 39, 79 | pm2.61dne 3019 |
. 2
⊢ (((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐴 ≠ 𝐵)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 81 | 80 | exp32 420 |
1
⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |