MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthauslem Structured version   Visualization version   GIF version

Theorem ordthauslem 22442
Description: Lemma for ordthaus 22443. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
ordthauslem.1 𝑋 = dom 𝑅
Assertion
Ref Expression
ordthauslem ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → (𝐴𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))))
Distinct variable groups:   𝑚,𝑛,𝐴   𝐵,𝑚,𝑛   𝑅,𝑚,𝑛   𝑚,𝑋,𝑛

Proof of Theorem ordthauslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1210 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝑅 ∈ TosetRel )
2 simpll3 1212 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵𝑋)
3 ordthauslem.1 . . . . . . 7 𝑋 = dom 𝑅
43ordtopn2 22254 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
51, 2, 4syl2anc 583 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
6 simpll2 1211 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴𝑋)
73ordtopn1 22253 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
81, 6, 7syl2anc 583 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
9 breq2 5074 . . . . . . 7 (𝑥 = 𝐴 → (𝐵𝑅𝑥𝐵𝑅𝐴))
109notbid 317 . . . . . 6 (𝑥 = 𝐴 → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐴))
11 simprr 769 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝐴𝐵)
12 simpl1 1189 . . . . . . . . . . 11 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝑅 ∈ TosetRel )
13 tsrps 18220 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
1412, 13syl 17 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝑅 ∈ PosetRel)
15 simprl 767 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝐴𝑅𝐵)
16 psasym 18209 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)
17163expia 1119 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐴 = 𝐵))
1814, 15, 17syl2anc 583 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (𝐵𝑅𝐴𝐴 = 𝐵))
1918necon3ad 2955 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (𝐴𝐵 → ¬ 𝐵𝑅𝐴))
2011, 19mpd 15 . . . . . . 7 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ¬ 𝐵𝑅𝐴)
2120adantr 480 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ¬ 𝐵𝑅𝐴)
2210, 6, 21elrabd 3619 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥})
23 breq1 5073 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝐴𝐵𝑅𝐴))
2423notbid 317 . . . . . 6 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐴 ↔ ¬ 𝐵𝑅𝐴))
2524, 2, 21elrabd 3619 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴})
26 simpr 484 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)
27 eleq2 2827 . . . . . . 7 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝐴𝑚𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}))
28 ineq1 4136 . . . . . . . 8 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝑚𝑛) = ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛))
2928eqeq1d 2740 . . . . . . 7 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝑚𝑛) = ∅ ↔ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅))
3027, 293anbi13d 1436 . . . . . 6 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵𝑛 ∧ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅)))
31 eleq2 2827 . . . . . . 7 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → (𝐵𝑛𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}))
32 ineq2 4137 . . . . . . . . 9 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}))
33 inrab 4237 . . . . . . . . 9 ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}) = {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)}
3432, 33eqtrdi 2795 . . . . . . . 8 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)})
3534eqeq1d 2740 . . . . . . 7 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → (({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅ ↔ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅))
3631, 353anbi23d 1437 . . . . . 6 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ((𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵𝑛 ∧ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)))
3730, 36rspc2ev 3564 . . . . 5 (({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
385, 8, 22, 25, 26, 37syl113anc 1380 . . . 4 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
3938ex 412 . . 3 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
40 rabn0 4316 . . . 4 ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ ↔ ∃𝑥𝑋𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))
41 simpll1 1210 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑅 ∈ TosetRel )
42 simprl 767 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑥𝑋)
433ordtopn2 22254 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
4441, 42, 43syl2anc 583 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
453ordtopn1 22253 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
4641, 42, 45syl2anc 583 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
47 breq2 5074 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝑅𝑦𝑥𝑅𝐴))
4847notbid 317 . . . . . . 7 (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐴))
49 simpll2 1211 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴𝑋)
50 simprrr 778 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝑥𝑅𝐴)
5148, 49, 50elrabd 3619 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
52 breq1 5073 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑅𝑥𝐵𝑅𝑥))
5352notbid 317 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝐵𝑅𝑥))
54 simpll3 1212 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵𝑋)
55 simprrl 777 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝐵𝑅𝑥)
5653, 54, 55elrabd 3619 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5741, 42jca 511 . . . . . . . . . 10 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → (𝑅 ∈ TosetRel ∧ 𝑥𝑋))
583tsrlin 18218 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
59583expa 1116 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
6057, 59sylan 579 . . . . . . . . 9 (((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
61 oran 986 . . . . . . . . 9 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6260, 61sylib 217 . . . . . . . 8 (((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦𝑋) → ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6362ralrimiva 3107 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∀𝑦𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
64 rabeq0 4315 . . . . . . 7 ({𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅ ↔ ∀𝑦𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6563, 64sylibr 233 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)
66 eleq2 2827 . . . . . . . 8 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝐴𝑚𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
67 ineq1 4136 . . . . . . . . 9 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝑚𝑛) = ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛))
6867eqeq1d 2740 . . . . . . . 8 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝑚𝑛) = ∅ ↔ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅))
6966, 683anbi13d 1436 . . . . . . 7 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵𝑛 ∧ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅)))
70 eleq2 2827 . . . . . . . 8 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → (𝐵𝑛𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
71 ineq2 4137 . . . . . . . . . 10 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
72 inrab 4237 . . . . . . . . . 10 ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)}
7371, 72eqtrdi 2795 . . . . . . . . 9 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)})
7473eqeq1d 2740 . . . . . . . 8 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → (({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅ ↔ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅))
7570, 743anbi23d 1437 . . . . . . 7 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ((𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵𝑛 ∧ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)))
7669, 75rspc2ev 3564 . . . . . 6 (({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅) ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
7744, 46, 51, 56, 65, 76syl113anc 1380 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
7877rexlimdvaa 3213 . . . 4 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (∃𝑥𝑋𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
7940, 78syl5bi 241 . . 3 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
8039, 79pm2.61dne 3030 . 2 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
8180exp32 420 1 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → (𝐴𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cin 3882  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418  ordTopcordt 17127  PosetRelcps 18197   TosetRel ctsr 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-bases 22004
This theorem is referenced by:  ordthaus  22443
  Copyright terms: Public domain W3C validator