MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthauslem Structured version   Visualization version   GIF version

Theorem ordthauslem 22280
Description: Lemma for ordthaus 22281. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
ordthauslem.1 𝑋 = dom 𝑅
Assertion
Ref Expression
ordthauslem ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → (𝐴𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))))
Distinct variable groups:   𝑚,𝑛,𝐴   𝐵,𝑚,𝑛   𝑅,𝑚,𝑛   𝑚,𝑋,𝑛

Proof of Theorem ordthauslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1214 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝑅 ∈ TosetRel )
2 simpll3 1216 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵𝑋)
3 ordthauslem.1 . . . . . . 7 𝑋 = dom 𝑅
43ordtopn2 22092 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
51, 2, 4syl2anc 587 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
6 simpll2 1215 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴𝑋)
73ordtopn1 22091 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
81, 6, 7syl2anc 587 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
9 breq2 5057 . . . . . . 7 (𝑥 = 𝐴 → (𝐵𝑅𝑥𝐵𝑅𝐴))
109notbid 321 . . . . . 6 (𝑥 = 𝐴 → (¬ 𝐵𝑅𝑥 ↔ ¬ 𝐵𝑅𝐴))
11 simprr 773 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝐴𝐵)
12 simpl1 1193 . . . . . . . . . . 11 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝑅 ∈ TosetRel )
13 tsrps 18093 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
1412, 13syl 17 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝑅 ∈ PosetRel)
15 simprl 771 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → 𝐴𝑅𝐵)
16 psasym 18082 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)
17163expia 1123 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐴 = 𝐵))
1814, 15, 17syl2anc 587 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (𝐵𝑅𝐴𝐴 = 𝐵))
1918necon3ad 2953 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (𝐴𝐵 → ¬ 𝐵𝑅𝐴))
2011, 19mpd 15 . . . . . . 7 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ¬ 𝐵𝑅𝐴)
2120adantr 484 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ¬ 𝐵𝑅𝐴)
2210, 6, 21elrabd 3604 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥})
23 breq1 5056 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝐴𝐵𝑅𝐴))
2423notbid 321 . . . . . 6 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐴 ↔ ¬ 𝐵𝑅𝐴))
2524, 2, 21elrabd 3604 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴})
26 simpr 488 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)
27 eleq2 2826 . . . . . . 7 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝐴𝑚𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}))
28 ineq1 4120 . . . . . . . 8 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → (𝑚𝑛) = ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛))
2928eqeq1d 2739 . . . . . . 7 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝑚𝑛) = ∅ ↔ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅))
3027, 293anbi13d 1440 . . . . . 6 (𝑚 = {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} → ((𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵𝑛 ∧ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅)))
31 eleq2 2826 . . . . . . 7 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → (𝐵𝑛𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}))
32 ineq2 4121 . . . . . . . . 9 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}))
33 inrab 4221 . . . . . . . . 9 ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴}) = {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)}
3432, 33eqtrdi 2794 . . . . . . . 8 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)})
3534eqeq1d 2739 . . . . . . 7 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → (({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅ ↔ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅))
3631, 353anbi23d 1441 . . . . . 6 (𝑛 = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} → ((𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵𝑛 ∧ ({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)))
3730, 36rspc2ev 3549 . . . . 5 (({𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∧ 𝐵 ∈ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
385, 8, 22, 25, 26, 37syl113anc 1384 . . . 4 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ {𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
3938ex 416 . . 3 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} = ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
40 rabn0 4300 . . . 4 ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ ↔ ∃𝑥𝑋𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))
41 simpll1 1214 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑅 ∈ TosetRel )
42 simprl 771 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝑥𝑋)
433ordtopn2 22092 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
4441, 42, 43syl2anc 587 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
453ordtopn1 22091 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
4641, 42, 45syl2anc 587 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
47 breq2 5057 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝑅𝑦𝑥𝑅𝐴))
4847notbid 321 . . . . . . 7 (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐴))
49 simpll2 1215 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴𝑋)
50 simprrr 782 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝑥𝑅𝐴)
5148, 49, 50elrabd 3604 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
52 breq1 5056 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑅𝑥𝐵𝑅𝑥))
5352notbid 321 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝐵𝑅𝑥))
54 simpll3 1216 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵𝑋)
55 simprrl 781 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ¬ 𝐵𝑅𝑥)
5653, 54, 55elrabd 3604 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5741, 42jca 515 . . . . . . . . . 10 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → (𝑅 ∈ TosetRel ∧ 𝑥𝑋))
583tsrlin 18091 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
59583expa 1120 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
6057, 59sylan 583 . . . . . . . . 9 (((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦𝑋) → (𝑥𝑅𝑦𝑦𝑅𝑥))
61 oran 990 . . . . . . . . 9 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6260, 61sylib 221 . . . . . . . 8 (((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) ∧ 𝑦𝑋) → ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6362ralrimiva 3105 . . . . . . 7 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∀𝑦𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
64 rabeq0 4299 . . . . . . 7 ({𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅ ↔ ∀𝑦𝑋 ¬ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥))
6563, 64sylibr 237 . . . . . 6 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)
66 eleq2 2826 . . . . . . . 8 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝐴𝑚𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
67 ineq1 4120 . . . . . . . . 9 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → (𝑚𝑛) = ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛))
6867eqeq1d 2739 . . . . . . . 8 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝑚𝑛) = ∅ ↔ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅))
6966, 683anbi13d 1440 . . . . . . 7 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} → ((𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵𝑛 ∧ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅)))
70 eleq2 2826 . . . . . . . 8 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → (𝐵𝑛𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
71 ineq2 4121 . . . . . . . . . 10 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
72 inrab 4221 . . . . . . . . . 10 ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)}
7371, 72eqtrdi 2794 . . . . . . . . 9 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)})
7473eqeq1d 2739 . . . . . . . 8 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → (({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅ ↔ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅))
7570, 743anbi23d 1441 . . . . . . 7 (𝑛 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} → ((𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵𝑛 ∧ ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝑛) = ∅) ↔ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)))
7669, 75rspc2ev 3549 . . . . . 6 (({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅) ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅) ∧ (𝐴 ∈ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∧ 𝐵 ∈ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∧ {𝑦𝑋 ∣ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)} = ∅)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
7744, 46, 51, 56, 65, 76syl113anc 1384 . . . . 5 ((((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) ∧ (𝑥𝑋 ∧ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴))) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
7877rexlimdvaa 3204 . . . 4 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → (∃𝑥𝑋𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
7940, 78syl5bi 245 . . 3 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ({𝑥𝑋 ∣ (¬ 𝐵𝑅𝑥 ∧ ¬ 𝑥𝑅𝐴)} ≠ ∅ → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅)))
8039, 79pm2.61dne 3028 . 2 (((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐴𝐵)) → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))
8180exp32 424 1 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → (𝐴𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴𝑚𝐵𝑛 ∧ (𝑚𝑛) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  {crab 3065  cin 3865  c0 4237   class class class wbr 5053  dom cdm 5551  cfv 6380  ordTopcordt 17004  PosetRelcps 18070   TosetRel ctsr 18071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202  df-en 8627  df-fin 8630  df-fi 9027  df-topgen 16948  df-ordt 17006  df-ps 18072  df-tsr 18073  df-bases 21843
This theorem is referenced by:  ordthaus  22281
  Copyright terms: Public domain W3C validator