Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  orddi Structured version   Visualization version   GIF version

Theorem orddi 1007
 Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
orddi (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ (((𝜑𝜒) ∧ (𝜑𝜃)) ∧ ((𝜓𝜒) ∧ (𝜓𝜃))))

Proof of Theorem orddi
StepHypRef Expression
1 ordir 1004 . 2 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑 ∨ (𝜒𝜃)) ∧ (𝜓 ∨ (𝜒𝜃))))
2 ordi 1003 . . 3 ((𝜑 ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜑𝜃)))
3 ordi 1003 . . 3 ((𝜓 ∨ (𝜒𝜃)) ↔ ((𝜓𝜒) ∧ (𝜓𝜃)))
42, 3anbi12i 629 . 2 (((𝜑 ∨ (𝜒𝜃)) ∧ (𝜓 ∨ (𝜒𝜃))) ↔ (((𝜑𝜒) ∧ (𝜑𝜃)) ∧ ((𝜓𝜒) ∧ (𝜓𝜃))))
51, 4bitri 278 1 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ (((𝜑𝜒) ∧ (𝜑𝜃)) ∧ ((𝜓𝜒) ∧ (𝜓𝜃))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by:  reuprg  4601  prneimg  4747  wl-cases2-dnf  34984
 Copyright terms: Public domain W3C validator