| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddi | Structured version Visualization version GIF version | ||
| Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| orddi | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordir 1009 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃)))) | |
| 2 | ordi 1008 | . . 3 ⊢ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃))) | |
| 3 | ordi 1008 | . . 3 ⊢ ((𝜓 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃))) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ (((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃))) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: reuprg 4703 prneimg 4854 wl-cases2-dnf 37513 fzunt 43468 fzuntd 43469 fzunt1d 43470 fzuntgd 43471 |
| Copyright terms: Public domain | W3C validator |