Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  anddi Structured version   Visualization version   GIF version

Theorem anddi 1040
 Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
anddi (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))

Proof of Theorem anddi
StepHypRef Expression
1 andir 1038 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑 ∧ (𝜒𝜃)) ∨ (𝜓 ∧ (𝜒𝜃))))
2 andi 1037 . . 3 ((𝜑 ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜑𝜃)))
3 andi 1037 . . 3 ((𝜓 ∧ (𝜒𝜃)) ↔ ((𝜓𝜒) ∨ (𝜓𝜃)))
42, 3orbi12i 945 . 2 (((𝜑 ∧ (𝜒𝜃)) ∨ (𝜓 ∧ (𝜒𝜃))) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))
51, 4bitri 267 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 386   ∨ wo 880 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881 This theorem is referenced by:  prnebg  4604  funun  6168  disjxpin  29948  icoreclin  33750  undif3VD  39936
 Copyright terms: Public domain W3C validator