MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anddi Structured version   Visualization version   GIF version

Theorem anddi 1008
Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
anddi (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))

Proof of Theorem anddi
StepHypRef Expression
1 andir 1006 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑 ∧ (𝜒𝜃)) ∨ (𝜓 ∧ (𝜒𝜃))))
2 andi 1005 . . 3 ((𝜑 ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜑𝜃)))
3 andi 1005 . . 3 ((𝜓 ∧ (𝜒𝜃)) ↔ ((𝜓𝜒) ∨ (𝜓𝜃)))
42, 3orbi12i 912 . 2 (((𝜑 ∧ (𝜒𝜃)) ∨ (𝜓 ∧ (𝜒𝜃))) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))
51, 4bitri 274 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∨ (𝜑𝜃)) ∨ ((𝜓𝜒) ∨ (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  prnebg  4786  funun  6480  disjxpin  30927  icoreclin  35528  undif3VD  42502
  Copyright terms: Public domain W3C validator