![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anddi | Structured version Visualization version GIF version |
Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
anddi | ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andir 1010 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ (𝜒 ∨ 𝜃)) ∨ (𝜓 ∧ (𝜒 ∨ 𝜃)))) | |
2 | andi 1009 | . . 3 ⊢ ((𝜑 ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃))) | |
3 | andi 1009 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) | |
4 | 2, 3 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ (𝜒 ∨ 𝜃)) ∨ (𝜓 ∧ (𝜒 ∨ 𝜃))) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
5 | 1, 4 | bitri 275 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: prnebg 4861 funun 6614 addsproplem2 28018 mulsproplem9 28165 disjxpin 32608 icoreclin 37340 undif3VD 44880 |
Copyright terms: Public domain | W3C validator |