Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzuntd Structured version   Visualization version   GIF version

Theorem fzuntd 42889
Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024.)
Hypotheses
Ref Expression
fzuntd.k (𝜑𝐾 ∈ ℤ)
fzuntd.m (𝜑𝑀 ∈ ℤ)
fzuntd.n (𝜑𝑁 ∈ ℤ)
fzuntd.km (𝜑𝐾𝑀)
fzuntd.mn (𝜑𝑀𝑁)
Assertion
Ref Expression
fzuntd (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))

Proof of Theorem fzuntd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗 ∈ ℤ)
21zred 12702 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗 ∈ ℝ)
3 fzuntd.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
43zred 12702 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑀 ∈ ℝ)
6 fzuntd.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
76zred 12702 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
87adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑁 ∈ ℝ)
9 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗𝑀)
10 fzuntd.mn . . . . . . . . . 10 (𝜑𝑀𝑁)
1110adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑀𝑁)
122, 5, 8, 9, 11letrd 11407 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗𝑁)
1312expr 455 . . . . . . 7 ((𝜑𝑗 ∈ ℤ) → (𝑗𝑀𝑗𝑁))
1413anim2d 610 . . . . . 6 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑀) → (𝐾𝑗𝑗𝑁)))
15 fzuntd.k . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
1615zred 12702 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1716adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾 ∈ ℝ)
184adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑀 ∈ ℝ)
19 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑗 ∈ ℤ)
2019zred 12702 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑗 ∈ ℝ)
21 fzuntd.km . . . . . . . . . 10 (𝜑𝐾𝑀)
2221adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾𝑀)
23 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑀𝑗)
2417, 18, 20, 22, 23letrd 11407 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾𝑗)
2524expr 455 . . . . . . 7 ((𝜑𝑗 ∈ ℤ) → (𝑀𝑗𝐾𝑗))
2625anim1d 609 . . . . . 6 ((𝜑𝑗 ∈ ℤ) → ((𝑀𝑗𝑗𝑁) → (𝐾𝑗𝑗𝑁)))
2714, 26jaod 857 . . . . 5 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
28 orc 865 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑀𝑗))
29 orc 865 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑗𝑁))
3028, 29jca 510 . . . . . . . 8 (𝐾𝑗 → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
3130ad2antrl 726 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
32 simpr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
3332zred 12702 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
344adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ ℝ)
3533, 34letrid 11402 . . . . . . . . 9 ((𝜑𝑗 ∈ ℤ) → (𝑗𝑀𝑀𝑗))
3635adantr 479 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑀𝑗))
37 simprr 771 . . . . . . . . 9 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → 𝑗𝑁)
3837olcd 872 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑗𝑁))
3936, 38jca 510 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁)))
40 orddi 1007 . . . . . . 7 (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)) ∧ ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁))))
4131, 39, 40sylanbrc 581 . . . . . 6 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))
4241ex 411 . . . . 5 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑁) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))))
4327, 42impbid 211 . . . 4 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
4443pm5.32da 577 . . 3 (𝜑 → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
45 elfz1 13527 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
4615, 3, 45syl2anc 582 . . . . . 6 (𝜑 → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
47 3anass 1092 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)))
4846, 47bitrdi 286 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀))))
49 elfz1 13527 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
503, 6, 49syl2anc 582 . . . . . 6 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
51 3anass 1092 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))
5250, 51bitrdi 286 . . . . 5 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5348, 52orbi12d 916 . . . 4 (𝜑 → ((𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))))
54 elun 4147 . . . 4 (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)))
55 andi 1005 . . . 4 ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5653, 54, 553bitr4g 313 . . 3 (𝜑 → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))))
57 elfz1 13527 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
5815, 6, 57syl2anc 582 . . . 4 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
59 3anass 1092 . . . 4 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁)))
6058, 59bitrdi 286 . . 3 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
6144, 56, 603bitr4d 310 . 2 (𝜑 → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ 𝑗 ∈ (𝐾...𝑁)))
6261eqrdv 2725 1 (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cun 3945   class class class wbr 5150  (class class class)co 7424  cr 11143  cle 11285  cz 12594  ...cfz 13522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-pre-lttri 11218  ax-pre-lttrn 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-neg 11483  df-z 12595  df-fz 13523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator