Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzuntd Structured version   Visualization version   GIF version

Theorem fzuntd 43469
Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024.)
Hypotheses
Ref Expression
fzuntd.k (𝜑𝐾 ∈ ℤ)
fzuntd.m (𝜑𝑀 ∈ ℤ)
fzuntd.n (𝜑𝑁 ∈ ℤ)
fzuntd.km (𝜑𝐾𝑀)
fzuntd.mn (𝜑𝑀𝑁)
Assertion
Ref Expression
fzuntd (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))

Proof of Theorem fzuntd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗 ∈ ℤ)
21zred 12722 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗 ∈ ℝ)
3 fzuntd.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
43zred 12722 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑀 ∈ ℝ)
6 fzuntd.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
76zred 12722 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑁 ∈ ℝ)
9 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗𝑀)
10 fzuntd.mn . . . . . . . . . 10 (𝜑𝑀𝑁)
1110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑀𝑁)
122, 5, 8, 9, 11letrd 11418 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑗𝑀)) → 𝑗𝑁)
1312expr 456 . . . . . . 7 ((𝜑𝑗 ∈ ℤ) → (𝑗𝑀𝑗𝑁))
1413anim2d 612 . . . . . 6 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑀) → (𝐾𝑗𝑗𝑁)))
15 fzuntd.k . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
1615zred 12722 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1716adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾 ∈ ℝ)
184adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑀 ∈ ℝ)
19 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑗 ∈ ℤ)
2019zred 12722 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑗 ∈ ℝ)
21 fzuntd.km . . . . . . . . . 10 (𝜑𝐾𝑀)
2221adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾𝑀)
23 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝑀𝑗)
2417, 18, 20, 22, 23letrd 11418 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑀𝑗)) → 𝐾𝑗)
2524expr 456 . . . . . . 7 ((𝜑𝑗 ∈ ℤ) → (𝑀𝑗𝐾𝑗))
2625anim1d 611 . . . . . 6 ((𝜑𝑗 ∈ ℤ) → ((𝑀𝑗𝑗𝑁) → (𝐾𝑗𝑗𝑁)))
2714, 26jaod 860 . . . . 5 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
28 orc 868 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑀𝑗))
29 orc 868 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑗𝑁))
3028, 29jca 511 . . . . . . . 8 (𝐾𝑗 → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
3130ad2antrl 728 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
32 simpr 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
3332zred 12722 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
344adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ ℝ)
3533, 34letrid 11413 . . . . . . . . 9 ((𝜑𝑗 ∈ ℤ) → (𝑗𝑀𝑀𝑗))
3635adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑀𝑗))
37 simprr 773 . . . . . . . . 9 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → 𝑗𝑁)
3837olcd 875 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑗𝑁))
3936, 38jca 511 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁)))
40 orddi 1012 . . . . . . 7 (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)) ∧ ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁))))
4131, 39, 40sylanbrc 583 . . . . . 6 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))
4241ex 412 . . . . 5 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑁) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))))
4327, 42impbid 212 . . . 4 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
4443pm5.32da 579 . . 3 (𝜑 → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
45 elfz1 13552 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
4615, 3, 45syl2anc 584 . . . . . 6 (𝜑 → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
47 3anass 1095 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)))
4846, 47bitrdi 287 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀))))
49 elfz1 13552 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
503, 6, 49syl2anc 584 . . . . . 6 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
51 3anass 1095 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))
5250, 51bitrdi 287 . . . . 5 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5348, 52orbi12d 919 . . . 4 (𝜑 → ((𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))))
54 elun 4153 . . . 4 (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)))
55 andi 1010 . . . 4 ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5653, 54, 553bitr4g 314 . . 3 (𝜑 → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))))
57 elfz1 13552 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
5815, 6, 57syl2anc 584 . . . 4 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
59 3anass 1095 . . . 4 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁)))
6058, 59bitrdi 287 . . 3 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
6144, 56, 603bitr4d 311 . 2 (𝜑 → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ 𝑗 ∈ (𝐾...𝑁)))
6261eqrdv 2735 1 (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cun 3949   class class class wbr 5143  (class class class)co 7431  cr 11154  cle 11296  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-fz 13548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator