MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordfr Structured version   Visualization version   GIF version

Theorem ordfr 6335
Description: Membership is well-founded on an ordinal class. In other words, an ordinal class is well-founded. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr (Ord 𝐴 → E Fr 𝐴)

Proof of Theorem ordfr
StepHypRef Expression
1 ordwe 6333 . 2 (Ord 𝐴 → E We 𝐴)
2 wefr 5621 . 2 ( E We 𝐴 → E Fr 𝐴)
31, 2syl 17 1 (Ord 𝐴 → E Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5530   Fr wfr 5581   We wwe 5583  Ord word 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-we 5586  df-ord 6323
This theorem is referenced by:  ordirr  6338  tz7.7  6346  onfr  6359  bnj580  34896  bnj1053  34959  bnj1071  34960
  Copyright terms: Public domain W3C validator