![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6395 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5268 E cep 5592 We wwe 5644 Ord word 6391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6395 |
This theorem is referenced by: ordfr 6407 trssord 6409 tz7.5 6413 ordelord 6414 tz7.7 6418 oieu 9586 oiid 9588 hartogslem1 9589 oemapso 9729 cantnf 9740 oemapwe 9741 dfac8b 10078 fin23lem27 10375 om2uzoi 14002 ltweuz 14008 om2noseqoi 28335 wepwso 43048 onfrALTlem3 44557 onfrALTlem3VD 44900 |
Copyright terms: Public domain | W3C validator |