| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6314 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5202 E cep 5522 We wwe 5575 Ord word 6310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6314 |
| This theorem is referenced by: ordfr 6326 trssord 6328 tz7.5 6332 ordelord 6333 tz7.7 6337 oieu 9450 oiid 9452 hartogslem1 9453 oemapso 9597 cantnf 9608 oemapwe 9609 dfac8b 9944 fin23lem27 10241 om2uzoi 13880 ltweuz 13886 om2noseqoi 28220 wepwso 43019 onfrALTlem3 44521 onfrALTlem3VD 44863 |
| Copyright terms: Public domain | W3C validator |