| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6352 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5226 E cep 5549 We wwe 5602 Ord word 6348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6352 |
| This theorem is referenced by: ordfr 6364 trssord 6366 tz7.5 6370 ordelord 6371 tz7.7 6375 oieu 9545 oiid 9547 hartogslem1 9548 oemapso 9688 cantnf 9699 oemapwe 9700 dfac8b 10037 fin23lem27 10334 om2uzoi 13962 ltweuz 13968 om2noseqoi 28212 wepwso 42992 onfrALTlem3 44495 onfrALTlem3VD 44838 |
| Copyright terms: Public domain | W3C validator |