| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6316 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5202 E cep 5520 We wwe 5573 Ord word 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6316 |
| This theorem is referenced by: ordfr 6328 trssord 6330 tz7.5 6334 ordelord 6335 tz7.7 6339 oieu 9434 oiid 9436 hartogslem1 9437 oemapso 9581 cantnf 9592 oemapwe 9593 dfac8b 9931 fin23lem27 10228 om2uzoi 13866 ltweuz 13872 om2noseqoi 28236 wepwso 43163 onfrALTlem3 44664 onfrALTlem3VD 45006 |
| Copyright terms: Public domain | W3C validator |