| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6335 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5214 E cep 5537 We wwe 5590 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6335 |
| This theorem is referenced by: ordfr 6347 trssord 6349 tz7.5 6353 ordelord 6354 tz7.7 6358 oieu 9492 oiid 9494 hartogslem1 9495 oemapso 9635 cantnf 9646 oemapwe 9647 dfac8b 9984 fin23lem27 10281 om2uzoi 13920 ltweuz 13926 om2noseqoi 28197 wepwso 43032 onfrALTlem3 44534 onfrALTlem3VD 44876 |
| Copyright terms: Public domain | W3C validator |