MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordwe Structured version   Visualization version   GIF version

Theorem ordwe 6405
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
StepHypRef Expression
1 df-ord 6395 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
21simprbi 496 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Tr wtr 5268   E cep 5592   We wwe 5644  Ord word 6391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ord 6395
This theorem is referenced by:  ordfr  6407  trssord  6409  tz7.5  6413  ordelord  6414  tz7.7  6418  oieu  9586  oiid  9588  hartogslem1  9589  oemapso  9729  cantnf  9740  oemapwe  9741  dfac8b  10078  fin23lem27  10375  om2uzoi  14002  ltweuz  14008  om2noseqoi  28335  wepwso  43048  onfrALTlem3  44557  onfrALTlem3VD  44900
  Copyright terms: Public domain W3C validator