![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 5944 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 491 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 4945 E cep 5224 We wwe 5270 Ord word 5940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ord 5944 |
This theorem is referenced by: ordfr 5956 trssord 5958 tz7.5 5962 ordelord 5963 tz7.7 5967 oieu 8686 oiid 8688 hartogslem1 8689 oemapso 8829 cantnf 8840 oemapwe 8841 dfac8b 9140 fin23lem27 9438 om2uzoi 13009 ltweuz 13015 wepwso 38394 onfrALTlem3 39526 onfrALTlem3VD 39879 |
Copyright terms: Public domain | W3C validator |