| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6309 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5198 E cep 5515 We wwe 5568 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6309 |
| This theorem is referenced by: ordfr 6321 trssord 6323 tz7.5 6327 ordelord 6328 tz7.7 6332 oieu 9425 oiid 9427 hartogslem1 9428 oemapso 9572 cantnf 9583 oemapwe 9584 dfac8b 9922 fin23lem27 10219 om2uzoi 13862 ltweuz 13868 om2noseqoi 28234 wepwso 43082 onfrALTlem3 44583 onfrALTlem3VD 44925 |
| Copyright terms: Public domain | W3C validator |