Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6269 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 497 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5191 E cep 5494 We wwe 5543 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ord 6269 |
This theorem is referenced by: ordfr 6281 trssord 6283 tz7.5 6287 ordelord 6288 tz7.7 6292 oieu 9298 oiid 9300 hartogslem1 9301 oemapso 9440 cantnf 9451 oemapwe 9452 dfac8b 9787 fin23lem27 10084 om2uzoi 13675 ltweuz 13681 wepwso 40868 onfrALTlem3 42164 onfrALTlem3VD 42507 |
Copyright terms: Public domain | W3C validator |