![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6368 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 498 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5266 E cep 5580 We wwe 5631 Ord word 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ord 6368 |
This theorem is referenced by: ordfr 6380 trssord 6382 tz7.5 6386 ordelord 6387 tz7.7 6391 oieu 9534 oiid 9536 hartogslem1 9537 oemapso 9677 cantnf 9688 oemapwe 9689 dfac8b 10026 fin23lem27 10323 om2uzoi 13920 ltweuz 13926 wepwso 41785 onfrALTlem3 43305 onfrALTlem3VD 43648 |
Copyright terms: Public domain | W3C validator |