MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordwe Structured version   Visualization version   GIF version

Theorem ordwe 6378
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
StepHypRef Expression
1 df-ord 6368 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
21simprbi 498 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Tr wtr 5266   E cep 5580   We wwe 5631  Ord word 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-ord 6368
This theorem is referenced by:  ordfr  6380  trssord  6382  tz7.5  6386  ordelord  6387  tz7.7  6391  oieu  9534  oiid  9536  hartogslem1  9537  oemapso  9677  cantnf  9688  oemapwe  9689  dfac8b  10026  fin23lem27  10323  om2uzoi  13920  ltweuz  13926  wepwso  41785  onfrALTlem3  43305  onfrALTlem3VD  43648
  Copyright terms: Public domain W3C validator