MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordwe Structured version   Visualization version   GIF version

Theorem ordwe 6345
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
StepHypRef Expression
1 df-ord 6335 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
21simprbi 496 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Tr wtr 5214   E cep 5537   We wwe 5590  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ord 6335
This theorem is referenced by:  ordfr  6347  trssord  6349  tz7.5  6353  ordelord  6354  tz7.7  6358  oieu  9492  oiid  9494  hartogslem1  9495  oemapso  9635  cantnf  9646  oemapwe  9647  dfac8b  9984  fin23lem27  10281  om2uzoi  13920  ltweuz  13926  om2noseqoi  28197  wepwso  43032  onfrALTlem3  44534  onfrALTlem3VD  44876
  Copyright terms: Public domain W3C validator