| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version | ||
| Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6366 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5239 E cep 5563 We wwe 5616 Ord word 6362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6366 |
| This theorem is referenced by: ordfr 6378 trssord 6380 tz7.5 6384 ordelord 6385 tz7.7 6389 oieu 9561 oiid 9563 hartogslem1 9564 oemapso 9704 cantnf 9715 oemapwe 9716 dfac8b 10053 fin23lem27 10350 om2uzoi 13978 ltweuz 13984 om2noseqoi 28245 wepwso 43018 onfrALTlem3 44521 onfrALTlem3VD 44864 |
| Copyright terms: Public domain | W3C validator |