![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6400 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6400 |
This theorem is referenced by: ordfr 6412 trssord 6414 tz7.5 6418 ordelord 6419 tz7.7 6423 oieu 9610 oiid 9612 hartogslem1 9613 oemapso 9753 cantnf 9764 oemapwe 9765 dfac8b 10102 fin23lem27 10399 om2uzoi 14008 ltweuz 14014 om2noseqoi 28329 wepwso 43002 onfrALTlem3 44517 onfrALTlem3VD 44860 |
Copyright terms: Public domain | W3C validator |