Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6172 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 500 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5138 E cep 5434 We wwe 5482 Ord word 6168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ord 6172 |
This theorem is referenced by: ordfr 6184 trssord 6186 tz7.5 6190 ordelord 6191 tz7.7 6195 oieu 9036 oiid 9038 hartogslem1 9039 oemapso 9178 cantnf 9189 oemapwe 9190 dfac8b 9491 fin23lem27 9788 om2uzoi 13372 ltweuz 13378 wepwso 40360 onfrALTlem3 41623 onfrALTlem3VD 41966 |
Copyright terms: Public domain | W3C validator |