Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6254 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ord 6254 |
This theorem is referenced by: ordfr 6266 trssord 6268 tz7.5 6272 ordelord 6273 tz7.7 6277 oieu 9228 oiid 9230 hartogslem1 9231 oemapso 9370 cantnf 9381 oemapwe 9382 dfac8b 9718 fin23lem27 10015 om2uzoi 13603 ltweuz 13609 wepwso 40784 onfrALTlem3 42053 onfrALTlem3VD 42396 |
Copyright terms: Public domain | W3C validator |