MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordwe Structured version   Visualization version   GIF version

Theorem ordwe 6326
Description: Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
StepHypRef Expression
1 df-ord 6316 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
21simprbi 496 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Tr wtr 5202   E cep 5520   We wwe 5573  Ord word 6312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ord 6316
This theorem is referenced by:  ordfr  6328  trssord  6330  tz7.5  6334  ordelord  6335  tz7.7  6339  oieu  9434  oiid  9436  hartogslem1  9437  oemapso  9581  cantnf  9592  oemapwe  9593  dfac8b  9931  fin23lem27  10228  om2uzoi  13866  ltweuz  13872  om2noseqoi  28236  wepwso  43163  onfrALTlem3  44664  onfrALTlem3VD  45006
  Copyright terms: Public domain W3C validator