MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Visualization version   GIF version

Definition df-we 5536
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7599. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 5533 . 2 wff 𝑅 We 𝐴
41, 2wfr 5531 . . 3 wff 𝑅 Fr 𝐴
51, 2wor 5492 . . 3 wff 𝑅 Or 𝐴
64, 5wa 399 . 2 wff (𝑅 Fr 𝐴𝑅 Or 𝐴)
73, 6wb 209 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  nfwe  5555  wess  5566  weeq1  5567  weeq2  5568  wefr  5569  weso  5570  we0  5574  weinxp  5661  wesn  5665  isowe  7197  isowe2  7198  dfwe2  7599  wexp  7939  wofi  8968  dford5reg  33639  finorwe  35459  fin2so  35670
  Copyright terms: Public domain W3C validator