MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Visualization version   GIF version

Definition df-we 5569
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7702. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 5566 . 2 wff 𝑅 We 𝐴
41, 2wfr 5564 . . 3 wff 𝑅 Fr 𝐴
51, 2wor 5521 . . 3 wff 𝑅 Or 𝐴
64, 5wa 395 . 2 wff (𝑅 Fr 𝐴𝑅 Or 𝐴)
73, 6wb 206 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  nfwe  5589  wess  5600  weeq1  5601  weeq2  5602  wefr  5604  weso  5605  we0  5609  weinxp  5699  wesn  5703  isowe  7278  isowe2  7279  dfwe2  7702  epweon  7703  wexp  8055  wofi  9168  dford5reg  35795  weiunwe  36482  finorwe  37395  fin2so  37626
  Copyright terms: Public domain W3C validator