| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7713. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5571 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5569 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5526 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5594 wess 5605 weeq1 5606 weeq2 5607 wefr 5609 weso 5610 we0 5614 weinxp 5704 wesn 5708 isowe 7289 isowe2 7290 dfwe2 7713 epweon 7714 wexp 8066 wofi 9179 dford5reg 35831 weiunwe 36520 finorwe 37433 fin2so 37653 |
| Copyright terms: Public domain | W3C validator |