| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7702. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5566 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5564 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5521 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5589 wess 5600 weeq1 5601 weeq2 5602 wefr 5604 weso 5605 we0 5609 weinxp 5699 wesn 5703 isowe 7278 isowe2 7279 dfwe2 7702 epweon 7703 wexp 8055 wofi 9168 dford5reg 35795 weiunwe 36482 finorwe 37395 fin2so 37626 |
| Copyright terms: Public domain | W3C validator |