MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Visualization version   GIF version

Definition df-we 5634
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7761. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 5631 . 2 wff 𝑅 We 𝐴
41, 2wfr 5629 . . 3 wff 𝑅 Fr 𝐴
51, 2wor 5588 . . 3 wff 𝑅 Or 𝐴
64, 5wa 397 . 2 wff (𝑅 Fr 𝐴𝑅 Or 𝐴)
73, 6wb 205 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  nfwe  5653  wess  5664  weeq1  5665  weeq2  5666  wefr  5667  weso  5668  we0  5672  weinxp  5761  wesn  5765  isowe  7346  isowe2  7347  dfwe2  7761  epweon  7762  wexp  8116  wofi  9292  dford5reg  34754  finorwe  36263  fin2so  36475
  Copyright terms: Public domain W3C validator