| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7714. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5575 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5573 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5530 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5598 wess 5609 weeq1 5610 weeq2 5611 wefr 5613 weso 5614 we0 5618 weinxp 5708 wesn 5712 isowe 7290 isowe2 7291 dfwe2 7714 epweon 7715 wexp 8070 wofi 9194 dford5reg 35755 weiunwe 36442 finorwe 37355 fin2so 37586 |
| Copyright terms: Public domain | W3C validator |