Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7599. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5533 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5531 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5492 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 399 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 209 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5555 wess 5566 weeq1 5567 weeq2 5568 wefr 5569 weso 5570 we0 5574 weinxp 5661 wesn 5665 isowe 7197 isowe2 7198 dfwe2 7599 wexp 7939 wofi 8968 dford5reg 33639 finorwe 35459 fin2so 35670 |
Copyright terms: Public domain | W3C validator |