![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7792. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5639 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5637 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5595 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5663 wess 5674 weeq1 5675 weeq2 5676 wefr 5678 weso 5679 we0 5683 weinxp 5772 wesn 5776 isowe 7368 isowe2 7369 dfwe2 7792 epweon 7793 wexp 8153 wofi 9322 dford5reg 35763 weiunwe 36451 finorwe 37364 fin2so 37593 |
Copyright terms: Public domain | W3C validator |