| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7753. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5593 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5591 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5548 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5616 wess 5627 weeq1 5628 weeq2 5629 wefr 5631 weso 5632 we0 5636 weinxp 5726 wesn 5730 isowe 7327 isowe2 7328 dfwe2 7753 epweon 7754 wexp 8112 wofi 9243 dford5reg 35777 weiunwe 36464 finorwe 37377 fin2so 37608 |
| Copyright terms: Public domain | W3C validator |