![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7809. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5651 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5649 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5606 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5675 wess 5686 weeq1 5687 weeq2 5688 wefr 5690 weso 5691 we0 5695 weinxp 5784 wesn 5788 isowe 7385 isowe2 7386 dfwe2 7809 epweon 7810 wexp 8171 wofi 9353 dford5reg 35746 weiunwe 36435 finorwe 37348 fin2so 37567 |
Copyright terms: Public domain | W3C validator |