MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Visualization version   GIF version

Definition df-we 5654
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7809. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 5651 . 2 wff 𝑅 We 𝐴
41, 2wfr 5649 . . 3 wff 𝑅 Fr 𝐴
51, 2wor 5606 . . 3 wff 𝑅 Or 𝐴
64, 5wa 395 . 2 wff (𝑅 Fr 𝐴𝑅 Or 𝐴)
73, 6wb 206 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  nfwe  5675  wess  5686  weeq1  5687  weeq2  5688  wefr  5690  weso  5691  we0  5695  weinxp  5784  wesn  5788  isowe  7385  isowe2  7386  dfwe2  7809  epweon  7810  wexp  8171  wofi  9353  dford5reg  35746  weiunwe  36435  finorwe  37348  fin2so  37567
  Copyright terms: Public domain W3C validator