![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7770. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5626 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5624 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5583 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 205 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5648 wess 5659 weeq1 5660 weeq2 5661 wefr 5662 weso 5663 we0 5667 weinxp 5756 wesn 5760 isowe 7351 isowe2 7352 dfwe2 7770 epweon 7771 wexp 8129 wofi 9308 dford5reg 35314 finorwe 36797 fin2so 37015 |
Copyright terms: Public domain | W3C validator |