MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Visualization version   GIF version

Definition df-we 5578
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7714. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 5575 . 2 wff 𝑅 We 𝐴
41, 2wfr 5573 . . 3 wff 𝑅 Fr 𝐴
51, 2wor 5530 . . 3 wff 𝑅 Or 𝐴
64, 5wa 395 . 2 wff (𝑅 Fr 𝐴𝑅 Or 𝐴)
73, 6wb 206 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  nfwe  5598  wess  5609  weeq1  5610  weeq2  5611  wefr  5613  weso  5614  we0  5618  weinxp  5708  wesn  5712  isowe  7290  isowe2  7291  dfwe2  7714  epweon  7715  wexp  8070  wofi  9194  dford5reg  35755  weiunwe  36442  finorwe  37355  fin2so  37586
  Copyright terms: Public domain W3C validator