![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7775. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5631 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5629 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5588 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 394 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 205 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5653 wess 5664 weeq1 5665 weeq2 5666 wefr 5667 weso 5668 we0 5672 weinxp 5761 wesn 5765 isowe 7354 isowe2 7355 dfwe2 7775 epweon 7776 wexp 8133 wofi 9315 dford5reg 35448 finorwe 36931 fin2so 37150 |
Copyright terms: Public domain | W3C validator |