| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7766. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5605 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5603 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5560 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5629 wess 5640 weeq1 5641 weeq2 5642 wefr 5644 weso 5645 we0 5649 weinxp 5739 wesn 5743 isowe 7341 isowe2 7342 dfwe2 7766 epweon 7767 wexp 8127 wofi 9295 dford5reg 35746 weiunwe 36433 finorwe 37346 fin2so 37577 |
| Copyright terms: Public domain | W3C validator |