| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7750. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5590 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5588 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5545 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5613 wess 5624 weeq1 5625 weeq2 5626 wefr 5628 weso 5629 we0 5633 weinxp 5723 wesn 5727 isowe 7324 isowe2 7325 dfwe2 7750 epweon 7751 wexp 8109 wofi 9236 dford5reg 35770 weiunwe 36457 finorwe 37370 fin2so 37601 |
| Copyright terms: Public domain | W3C validator |