| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version | ||
| Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7763. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 5603 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 5601 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | wor 5558 | . . 3 wff 𝑅 Or 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfwe 5627 wess 5638 weeq1 5639 weeq2 5640 wefr 5642 weso 5643 we0 5647 weinxp 5737 wesn 5741 isowe 7338 isowe2 7339 dfwe2 7763 epweon 7764 wexp 8124 wofi 9292 dford5reg 35729 weiunwe 36416 finorwe 37329 fin2so 37560 |
| Copyright terms: Public domain | W3C validator |