MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr Structured version   Visualization version   GIF version

Theorem ordtr 6265
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
StepHypRef Expression
1 df-ord 6254 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
21simplbi 497 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Tr wtr 5187   E cep 5485   We wwe 5534  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-ord 6254
This theorem is referenced by:  ordelss  6267  ordn2lp  6271  ordelord  6273  tz7.7  6277  ordelssne  6278  ordin  6281  ordtr1  6294  orduniss  6345  ontrci  6357  ordunisuc  7654  onuninsuci  7662  limsuc  7671  trom  7696  omsindsOLD  7709  dfrecs3  8174  dfrecs3OLD  8175  tz7.44-2  8209  cantnflt  9360  cantnfp1lem3  9368  cantnflem1b  9374  cantnflem1  9377  cnfcom  9388  axdc3lem2  10138  inar1  10462  efgmnvl  19235  bnj967  32825  dford5  33573  dford3  40766  limsuc2  40782  ordelordALT  42046  onfrALTlem2  42055  ordelordALTVD  42376  onfrALTlem2VD  42398  iunord  46268
  Copyright terms: Public domain W3C validator