| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6360 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5234 E cep 5557 We wwe 5610 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6360 |
| This theorem is referenced by: ordelss 6373 ordn2lp 6377 ordelord 6379 tz7.7 6383 ordelssne 6384 ordin 6387 ordtr1 6401 orduniss 6456 ontr 6468 dford5 7783 ordsuci 7807 ordunisuc 7831 limsuc 7849 trom 7875 dfrecs3 8391 dfrecs3OLD 8392 tz7.44-2 8426 cantnflt 9691 cantnfp1lem3 9699 cantnflem1b 9705 cantnflem1 9708 cnfcom 9719 axdc3lem2 10470 inar1 10794 efgmnvl 19700 bnj967 34981 dford3 43019 limsuc2 43032 ordsssucim 43393 ordelordALT 44529 onfrALTlem2 44538 ordelordALTVD 44858 onfrALTlem2VD 44880 iunord 49507 |
| Copyright terms: Public domain | W3C validator |