![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6389 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5265 E cep 5588 We wwe 5640 Ord word 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6389 |
This theorem is referenced by: ordelss 6402 ordn2lp 6406 ordelord 6408 tz7.7 6412 ordelssne 6413 ordin 6416 ordtr1 6429 orduniss 6483 ontr 6495 dford5 7803 ordsuci 7828 ordunisuc 7852 limsuc 7870 trom 7896 omsindsOLD 7909 dfrecs3 8411 dfrecs3OLD 8412 tz7.44-2 8446 cantnflt 9710 cantnfp1lem3 9718 cantnflem1b 9724 cantnflem1 9727 cnfcom 9738 axdc3lem2 10489 inar1 10813 efgmnvl 19747 bnj967 34938 dford3 43017 limsuc2 43030 ordsssucim 43392 ordelordALT 44535 onfrALTlem2 44544 ordelordALTVD 44865 onfrALTlem2VD 44887 iunord 48907 |
Copyright terms: Public domain | W3C validator |