Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6177 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 501 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5142 E cep 5438 We wwe 5486 Ord word 6173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ord 6177 |
This theorem is referenced by: ordelss 6190 ordn2lp 6194 ordelord 6196 tz7.7 6200 ordelssne 6201 ordin 6204 ordtr1 6217 orduniss 6268 ontrci 6280 ordunisuc 7552 onuninsuci 7560 limsuc 7569 ordom 7594 elnn 7595 omsinds 7605 dfrecs3 8025 tz7.44-2 8059 cantnflt 9181 cantnfp1lem3 9189 cantnflem1b 9195 cantnflem1 9198 cnfcom 9209 axdc3lem2 9924 inar1 10248 efgmnvl 18920 bnj967 32457 dford5 33201 dford3 40377 limsuc2 40393 ordelordALT 41651 onfrALTlem2 41660 ordelordALTVD 41981 onfrALTlem2VD 42003 iunord 45691 |
Copyright terms: Public domain | W3C validator |