| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6310 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5199 E cep 5518 We wwe 5571 Ord word 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6310 |
| This theorem is referenced by: ordelss 6323 ordn2lp 6327 ordelord 6329 tz7.7 6333 ordelssne 6334 ordin 6337 ordtr1 6351 orduniss 6406 ontr 6418 dford5 7720 ordsuci 7744 ordunisuc 7765 limsuc 7782 trom 7808 dfrecs3 8295 tz7.44-2 8329 cantnflt 9568 cantnfp1lem3 9576 cantnflem1b 9582 cantnflem1 9585 cnfcom 9596 axdc3lem2 10345 inar1 10669 efgmnvl 19593 bnj967 34928 dford3 43021 limsuc2 43034 ordsssucim 43395 ordelordALT 44531 onfrALTlem2 44540 ordelordALTVD 44860 onfrALTlem2VD 44882 iunord 49681 |
| Copyright terms: Public domain | W3C validator |