Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6269 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 498 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5191 E cep 5494 We wwe 5543 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ord 6269 |
This theorem is referenced by: ordelss 6282 ordn2lp 6286 ordelord 6288 tz7.7 6292 ordelssne 6293 ordin 6296 ordtr1 6309 orduniss 6360 ontrci 6372 ordunisuc 7679 onuninsuci 7687 limsuc 7696 trom 7721 omsindsOLD 7734 dfrecs3 8203 dfrecs3OLD 8204 tz7.44-2 8238 cantnflt 9430 cantnfp1lem3 9438 cantnflem1b 9444 cantnflem1 9447 cnfcom 9458 axdc3lem2 10207 inar1 10531 efgmnvl 19320 bnj967 32925 dford5 33671 dford3 40850 limsuc2 40866 nlimsuc 41048 ordelordALT 42157 onfrALTlem2 42166 ordelordALTVD 42487 onfrALTlem2VD 42509 iunord 46382 |
Copyright terms: Public domain | W3C validator |