Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6299 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 498 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5206 E cep 5517 We wwe 5568 Ord word 6295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ord 6299 |
This theorem is referenced by: ordelss 6312 ordn2lp 6316 ordelord 6318 tz7.7 6322 ordelssne 6323 ordin 6326 ordtr1 6339 orduniss 6392 ontr 6403 dford5 7688 ordsuci 7713 ordunisuc 7737 limsuc 7755 trom 7781 omsindsOLD 7794 dfrecs3 8265 dfrecs3OLD 8266 tz7.44-2 8300 cantnflt 9521 cantnfp1lem3 9529 cantnflem1b 9535 cantnflem1 9538 cnfcom 9549 axdc3lem2 10300 inar1 10624 efgmnvl 19407 bnj967 33137 dford3 41101 limsuc2 41117 ordelordALT 42467 onfrALTlem2 42476 ordelordALTVD 42797 onfrALTlem2VD 42819 iunord 46722 |
Copyright terms: Public domain | W3C validator |