![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6398 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6398 |
This theorem is referenced by: ordelss 6411 ordn2lp 6415 ordelord 6417 tz7.7 6421 ordelssne 6422 ordin 6425 ordtr1 6438 orduniss 6492 ontr 6504 dford5 7819 ordsuci 7844 ordunisuc 7868 limsuc 7886 trom 7912 omsindsOLD 7925 dfrecs3 8428 dfrecs3OLD 8429 tz7.44-2 8463 cantnflt 9741 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1 9758 cnfcom 9769 axdc3lem2 10520 inar1 10844 efgmnvl 19756 bnj967 34921 dford3 42985 limsuc2 42998 ordsssucim 43364 ordelordALT 44508 onfrALTlem2 44517 ordelordALTVD 44838 onfrALTlem2VD 44860 iunord 48768 |
Copyright terms: Public domain | W3C validator |