| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6335 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5214 E cep 5537 We wwe 5590 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6335 |
| This theorem is referenced by: ordelss 6348 ordn2lp 6352 ordelord 6354 tz7.7 6358 ordelssne 6359 ordin 6362 ordtr1 6376 orduniss 6431 ontr 6443 dford5 7760 ordsuci 7784 ordunisuc 7807 limsuc 7825 trom 7851 dfrecs3 8341 tz7.44-2 8375 cantnflt 9625 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1 9642 cnfcom 9653 axdc3lem2 10404 inar1 10728 efgmnvl 19644 bnj967 34935 dford3 43017 limsuc2 43030 ordsssucim 43391 ordelordALT 44527 onfrALTlem2 44536 ordelordALTVD 44856 onfrALTlem2VD 44878 iunord 49665 |
| Copyright terms: Public domain | W3C validator |