Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6254 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ord 6254 |
This theorem is referenced by: ordelss 6267 ordn2lp 6271 ordelord 6273 tz7.7 6277 ordelssne 6278 ordin 6281 ordtr1 6294 orduniss 6345 ontrci 6357 ordunisuc 7654 onuninsuci 7662 limsuc 7671 trom 7696 omsindsOLD 7709 dfrecs3 8174 dfrecs3OLD 8175 tz7.44-2 8209 cantnflt 9360 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 cnfcom 9388 axdc3lem2 10138 inar1 10462 efgmnvl 19235 bnj967 32825 dford5 33573 dford3 40766 limsuc2 40782 ordelordALT 42046 onfrALTlem2 42055 ordelordALTVD 42376 onfrALTlem2VD 42398 iunord 46268 |
Copyright terms: Public domain | W3C validator |