| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6309 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5196 E cep 5513 We wwe 5566 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6309 |
| This theorem is referenced by: ordelss 6322 ordn2lp 6326 ordelord 6328 tz7.7 6332 ordelssne 6333 ordin 6336 ordtr1 6350 orduniss 6405 ontr 6417 dford5 7717 ordsuci 7741 ordunisuc 7762 limsuc 7779 trom 7805 dfrecs3 8292 tz7.44-2 8326 cantnflt 9562 cantnfp1lem3 9570 cantnflem1b 9576 cantnflem1 9579 cnfcom 9590 axdc3lem2 10342 inar1 10666 efgmnvl 19626 bnj967 34957 dford3 43120 limsuc2 43133 ordsssucim 43494 ordelordALT 44629 onfrALTlem2 44638 ordelordALTVD 44958 onfrALTlem2VD 44980 iunord 49776 |
| Copyright terms: Public domain | W3C validator |