| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6323 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5209 E cep 5530 We wwe 5583 Ord word 6319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6323 |
| This theorem is referenced by: ordelss 6336 ordn2lp 6340 ordelord 6342 tz7.7 6346 ordelssne 6347 ordin 6350 ordtr1 6364 orduniss 6419 ontr 6431 dford5 7740 ordsuci 7764 ordunisuc 7787 limsuc 7805 trom 7831 dfrecs3 8318 tz7.44-2 8352 cantnflt 9601 cantnfp1lem3 9609 cantnflem1b 9615 cantnflem1 9618 cnfcom 9629 axdc3lem2 10380 inar1 10704 efgmnvl 19628 bnj967 34928 dford3 43010 limsuc2 43023 ordsssucim 43384 ordelordALT 44520 onfrALTlem2 44529 ordelordALTVD 44849 onfrALTlem2VD 44871 iunord 49658 |
| Copyright terms: Public domain | W3C validator |