| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr | Structured version Visualization version GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6338 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Tr wtr 5217 E cep 5540 We wwe 5593 Ord word 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ord 6338 |
| This theorem is referenced by: ordelss 6351 ordn2lp 6355 ordelord 6357 tz7.7 6361 ordelssne 6362 ordin 6365 ordtr1 6379 orduniss 6434 ontr 6446 dford5 7763 ordsuci 7787 ordunisuc 7810 limsuc 7828 trom 7854 dfrecs3 8344 tz7.44-2 8378 cantnflt 9632 cantnfp1lem3 9640 cantnflem1b 9646 cantnflem1 9649 cnfcom 9660 axdc3lem2 10411 inar1 10735 efgmnvl 19651 bnj967 34942 dford3 43024 limsuc2 43037 ordsssucim 43398 ordelordALT 44534 onfrALTlem2 44543 ordelordALTVD 44863 onfrALTlem2VD 44885 iunord 49669 |
| Copyright terms: Public domain | W3C validator |