Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1071 Structured version   Visualization version   GIF version

Theorem bnj1071 32957
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1071.7 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1071 (𝑛𝐷 → E Fr 𝑛)

Proof of Theorem bnj1071
StepHypRef Expression
1 bnj1071.7 . . 3 𝐷 = (ω ∖ {∅})
21bnj923 32748 . 2 (𝑛𝐷𝑛 ∈ ω)
3 nnord 7720 . 2 (𝑛 ∈ ω → Ord 𝑛)
4 ordfr 6281 . 2 (Ord 𝑛 → E Fr 𝑛)
52, 3, 43syl 18 1 (𝑛𝐷 → E Fr 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cdif 3884  c0 4256  {csn 4561   E cep 5494   Fr wfr 5541  Ord word 6265  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-uni 4840  df-tr 5192  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-om 7713
This theorem is referenced by:  bnj1030  32967  bnj1133  32969
  Copyright terms: Public domain W3C validator