| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1071 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35046. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1071.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj1071 | ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1071.7 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 2 | 1 | bnj923 34804 | . 2 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 3 | nnord 7874 | . 2 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
| 4 | ordfr 6372 | . 2 ⊢ (Ord 𝑛 → E Fr 𝑛) | |
| 5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 {csn 4606 E cep 5557 Fr wfr 5608 Ord word 6356 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-om 7867 |
| This theorem is referenced by: bnj1030 35023 bnj1133 35025 |
| Copyright terms: Public domain | W3C validator |