Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1071 Structured version   Visualization version   GIF version

Theorem bnj1071 34967
Description: Technical lemma for bnj69 35000. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1071.7 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1071 (𝑛𝐷 → E Fr 𝑛)

Proof of Theorem bnj1071
StepHypRef Expression
1 bnj1071.7 . . 3 𝐷 = (ω ∖ {∅})
21bnj923 34758 . 2 (𝑛𝐷𝑛 ∈ ω)
3 nnord 7850 . 2 (𝑛 ∈ ω → Ord 𝑛)
4 ordfr 6347 . 2 (Ord 𝑛 → E Fr 𝑛)
52, 3, 43syl 18 1 (𝑛𝐷 → E Fr 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  c0 4296  {csn 4589   E cep 5537   Fr wfr 5588  Ord word 6331  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-ss 3931  df-uni 4872  df-tr 5215  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-om 7843
This theorem is referenced by:  bnj1030  34977  bnj1133  34979
  Copyright terms: Public domain W3C validator