Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1071 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1071.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj1071 | ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1071.7 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
2 | 1 | bnj923 32648 | . 2 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
3 | nnord 7695 | . 2 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
4 | ordfr 6266 | . 2 ⊢ (Ord 𝑛 → E Fr 𝑛) | |
5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 {csn 4558 E cep 5485 Fr wfr 5532 Ord word 6250 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-om 7688 |
This theorem is referenced by: bnj1030 32867 bnj1133 32869 |
Copyright terms: Public domain | W3C validator |