![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1071 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33679. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1071.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj1071 | ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1071.7 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
2 | 1 | bnj923 33437 | . 2 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
3 | nnord 7811 | . 2 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
4 | ordfr 6333 | . 2 ⊢ (Ord 𝑛 → E Fr 𝑛) | |
5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∖ cdif 3908 ∅c0 4283 {csn 4587 E cep 5537 Fr wfr 5586 Ord word 6317 ωcom 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rab 3407 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 df-uni 4867 df-tr 5224 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-ord 6321 df-on 6322 df-om 7804 |
This theorem is referenced by: bnj1030 33656 bnj1133 33658 |
Copyright terms: Public domain | W3C validator |