MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.7 Structured version   Visualization version   GIF version

Theorem tz7.7 5934
Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.)
Assertion
Ref Expression
tz7.7 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴)))

Proof of Theorem tz7.7
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtr 5922 . . . 4 (Ord 𝐴 → Tr 𝐴)
2 ordfr 5923 . . . 4 (Ord 𝐴 → E Fr 𝐴)
3 tz7.2 5261 . . . . 5 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
433exp 1148 . . . 4 (Tr 𝐴 → ( E Fr 𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴))))
51, 2, 4sylc 65 . . 3 (Ord 𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
65adantr 472 . 2 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
7 pssdifn0 4108 . . . . . 6 ((𝐵𝐴𝐵𝐴) → (𝐴𝐵) ≠ ∅)
8 difss 3899 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐴
9 tz7.5 5929 . . . . . . . . . . . 12 ((Ord 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅)
108, 9mp3an2 1573 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅)
11 eldifi 3894 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
12 trss 4920 . . . . . . . . . . . . . . . . . 18 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
13 difin0ss 4111 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐵) ∩ 𝑥) = ∅ → (𝑥𝐴𝑥𝐵))
1413com12 32 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵))
1511, 12, 14syl56 36 . . . . . . . . . . . . . . . . 17 (Tr 𝐴 → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
161, 15syl 17 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
1716ad2antrr 717 . . . . . . . . . . . . . . 15 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
1817imp32 409 . . . . . . . . . . . . . 14 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥𝐵)
19 eleq1w 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2019biimpcd 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
21 eldifn 3895 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
2220, 21nsyli 156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑦 = 𝑥))
2322imp 395 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐵𝑥 ∈ (𝐴𝐵)) → ¬ 𝑦 = 𝑥)
2423adantll 705 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵)) → ¬ 𝑦 = 𝑥)
2524adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑦 = 𝑥)
26 trel 4918 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Tr 𝐵 → ((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
2726expcomd 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Tr 𝐵 → (𝑦𝐵 → (𝑥𝑦𝑥𝐵)))
2827imp 395 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Tr 𝐵𝑦𝐵) → (𝑥𝑦𝑥𝐵))
2928, 21nsyli 156 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Tr 𝐵𝑦𝐵) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦))
3029ex 401 . . . . . . . . . . . . . . . . . . . . . . 23 (Tr 𝐵 → (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦)))
3130adantld 484 . . . . . . . . . . . . . . . . . . . . . 22 (Tr 𝐵 → ((𝐵𝐴𝑦𝐵) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦)))
3231imp32 409 . . . . . . . . . . . . . . . . . . . . 21 ((Tr 𝐵 ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑥𝑦)
3332adantll 705 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑥𝑦)
34 ordwe 5921 . . . . . . . . . . . . . . . . . . . . . 22 (Ord 𝐴 → E We 𝐴)
35 ssel2 3756 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
3635, 11anim12i 606 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝑦𝐴𝑥𝐴))
37 wecmpep 5269 . . . . . . . . . . . . . . . . . . . . . 22 (( E We 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
3834, 36, 37syl2an 589 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝐴 ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
3938adantlr 706 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
4025, 33, 39ecase23d 1597 . . . . . . . . . . . . . . . . . . 19 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → 𝑦𝑥)
4140exp44 428 . . . . . . . . . . . . . . . . . 18 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → 𝑦𝑥))))
4241com34 91 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝑥 ∈ (𝐴𝐵) → (𝑦𝐵𝑦𝑥))))
4342imp31 408 . . . . . . . . . . . . . . . 16 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝑦𝐵𝑦𝑥))
4443ssrdv 3767 . . . . . . . . . . . . . . 15 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → 𝐵𝑥)
4544adantrr 708 . . . . . . . . . . . . . 14 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝐵𝑥)
4618, 45eqssd 3778 . . . . . . . . . . . . 13 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥 = 𝐵)
4711ad2antrl 719 . . . . . . . . . . . . 13 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥𝐴)
4846, 47eqeltrrd 2845 . . . . . . . . . . . 12 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝐵𝐴)
4948rexlimdvaa 3179 . . . . . . . . . . 11 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → (∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅ → 𝐵𝐴))
5010, 49syl5 34 . . . . . . . . . 10 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → ((Ord 𝐴 ∧ (𝐴𝐵) ≠ ∅) → 𝐵𝐴))
5150exp4b 421 . . . . . . . . 9 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (Ord 𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5251com23 86 . . . . . . . 8 ((Ord 𝐴 ∧ Tr 𝐵) → (Ord 𝐴 → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5352adantrd 485 . . . . . . 7 ((Ord 𝐴 ∧ Tr 𝐵) → ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5453pm2.43i 52 . . . . . 6 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴)))
557, 54syl7 74 . . . . 5 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐵𝐴𝐵𝐴) → 𝐵𝐴)))
5655exp4a 422 . . . 4 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴))))
5756pm2.43d 53 . . 3 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
5857impd 398 . 2 ((Ord 𝐴 ∧ Tr 𝐵) → ((𝐵𝐴𝐵𝐴) → 𝐵𝐴))
596, 58impbid 203 1 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3o 1106   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cdif 3729  cin 3731  wss 3732  c0 4079  Tr wtr 4911   E cep 5189   Fr wfr 5233   We wwe 5235  Ord word 5907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-tr 4912  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-ord 5911
This theorem is referenced by:  ordelssne  5935  dfon2  32140
  Copyright terms: Public domain W3C validator