| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6350 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5621 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 E cep 5540 Fr wfr 5591 Ord word 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 df-we 5596 df-ord 6338 |
| This theorem is referenced by: nordeq 6354 ordn2lp 6355 ordtri3or 6367 ordtri1 6368 ordtri3 6371 orddisj 6373 ordunidif 6385 ordnbtwn 6430 onirri 6450 onssneli 6453 epweon 7754 onprc 7757 nlimsucg 7821 nnlim 7859 limom 7861 soseq 8141 smo11 8336 smoord 8337 tfrlem13 8361 omopth2 8551 cofonr 8641 naddcllem 8643 limensuci 9123 infensuc 9125 ordtypelem9 9486 cantnfp1lem3 9640 cantnfp1 9641 oemapvali 9644 tskwe 9910 dif1card 9970 dju1p1e2ALT 10135 nnadju 10158 pwsdompw 10163 cflim2 10223 fin23lem24 10282 fin23lem26 10285 axdc3lem4 10413 ttukeylem7 10475 canthp1lem2 10613 inar1 10735 gruina 10778 grur1 10780 addnidpi 10861 fzennn 13940 hashp1i 14375 noseponlem 27583 noextend 27585 noextenddif 27587 noextendlt 27588 noextendgt 27589 fvnobday 27597 nosepssdm 27605 nosupbnd1lem3 27629 nosupbnd1lem5 27631 nosupbnd2lem1 27634 noinfbnd1lem3 27644 noinfbnd1lem5 27646 noinfbnd2lem1 27649 noetasuplem4 27655 noetainflem4 27659 sucneqond 37360 oaordnrex 43291 omnord1ex 43300 oenord1ex 43311 cantnfresb 43320 tfsconcatb0 43340 nlimsuc 43437 |
| Copyright terms: Public domain | W3C validator |