| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6326 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5603 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 E cep 5522 Fr wfr 5573 Ord word 6310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 df-fr 5576 df-we 5578 df-ord 6314 |
| This theorem is referenced by: nordeq 6330 ordn2lp 6331 ordtri3or 6343 ordtri1 6344 ordtri3 6347 orddisj 6349 ordunidif 6361 ordnbtwn 6406 onirri 6425 onssneli 6428 epweon 7715 onprc 7718 nlimsucg 7782 nnlim 7820 limom 7822 soseq 8099 smo11 8294 smoord 8295 tfrlem13 8319 omopth2 8509 cofonr 8599 naddcllem 8601 limensuci 9077 infensuc 9079 ordtypelem9 9437 cantnfp1lem3 9595 cantnfp1 9596 oemapvali 9599 tskwe 9865 dif1card 9923 dju1p1e2ALT 10088 nnadju 10111 pwsdompw 10116 cflim2 10176 fin23lem24 10235 fin23lem26 10238 axdc3lem4 10366 ttukeylem7 10428 canthp1lem2 10566 inar1 10688 gruina 10731 grur1 10733 addnidpi 10814 fzennn 13893 hashp1i 14328 noseponlem 27592 noextend 27594 noextenddif 27596 noextendlt 27597 noextendgt 27598 fvnobday 27606 nosepssdm 27614 nosupbnd1lem3 27638 nosupbnd1lem5 27640 nosupbnd2lem1 27643 noinfbnd1lem3 27653 noinfbnd1lem5 27655 noinfbnd2lem1 27658 noetasuplem4 27664 noetainflem4 27668 sucneqond 37341 oaordnrex 43271 omnord1ex 43280 oenord1ex 43291 cantnfresb 43300 tfsconcatb0 43320 nlimsuc 43417 |
| Copyright terms: Public domain | W3C validator |