![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version |
Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 6410 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
2 | efrirr 5680 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 E cep 5598 Fr wfr 5649 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: nordeq 6414 ordn2lp 6415 ordtri3or 6427 ordtri1 6428 ordtri3 6431 orddisj 6433 ordunidif 6444 ordnbtwn 6488 onirri 6508 onssneli 6511 epweon 7810 onprc 7813 nlimsucg 7879 nnlim 7917 limom 7919 soseq 8200 smo11 8420 smoord 8421 tfrlem13 8446 omopth2 8640 cofonr 8730 naddcllem 8732 limensuci 9219 infensuc 9221 ordtypelem9 9595 cantnfp1lem3 9749 cantnfp1 9750 oemapvali 9753 tskwe 10019 dif1card 10079 dju1p1e2ALT 10244 nnadju 10267 pwsdompw 10272 cflim2 10332 fin23lem24 10391 fin23lem26 10394 axdc3lem4 10522 ttukeylem7 10584 canthp1lem2 10722 inar1 10844 gruina 10887 grur1 10889 addnidpi 10970 fzennn 14019 hashp1i 14452 noseponlem 27727 noextend 27729 noextenddif 27731 noextendlt 27732 noextendgt 27733 fvnobday 27741 nosepssdm 27749 nosupbnd1lem3 27773 nosupbnd1lem5 27775 nosupbnd2lem1 27778 noinfbnd1lem3 27788 noinfbnd1lem5 27790 noinfbnd2lem1 27793 noetasuplem4 27799 noetainflem4 27803 sucneqond 37331 oaordnrex 43257 omnord1ex 43266 oenord1ex 43277 cantnfresb 43286 tfsconcatb0 43306 nlimsuc 43403 |
Copyright terms: Public domain | W3C validator |