| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6367 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5634 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 E cep 5552 Fr wfr 5603 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: nordeq 6371 ordn2lp 6372 ordtri3or 6384 ordtri1 6385 ordtri3 6388 orddisj 6390 ordunidif 6402 ordnbtwn 6447 onirri 6467 onssneli 6470 epweon 7769 onprc 7772 nlimsucg 7837 nnlim 7875 limom 7877 soseq 8158 smo11 8378 smoord 8379 tfrlem13 8404 omopth2 8596 cofonr 8686 naddcllem 8688 limensuci 9167 infensuc 9169 ordtypelem9 9540 cantnfp1lem3 9694 cantnfp1 9695 oemapvali 9698 tskwe 9964 dif1card 10024 dju1p1e2ALT 10189 nnadju 10212 pwsdompw 10217 cflim2 10277 fin23lem24 10336 fin23lem26 10339 axdc3lem4 10467 ttukeylem7 10529 canthp1lem2 10667 inar1 10789 gruina 10832 grur1 10834 addnidpi 10915 fzennn 13986 hashp1i 14421 noseponlem 27628 noextend 27630 noextenddif 27632 noextendlt 27633 noextendgt 27634 fvnobday 27642 nosepssdm 27650 nosupbnd1lem3 27674 nosupbnd1lem5 27676 nosupbnd2lem1 27679 noinfbnd1lem3 27689 noinfbnd1lem5 27691 noinfbnd2lem1 27694 noetasuplem4 27700 noetainflem4 27704 sucneqond 37383 oaordnrex 43319 omnord1ex 43328 oenord1ex 43339 cantnfresb 43348 tfsconcatb0 43368 nlimsuc 43465 |
| Copyright terms: Public domain | W3C validator |