| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6328 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5601 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 E cep 5520 Fr wfr 5571 Ord word 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-fr 5574 df-we 5576 df-ord 6316 |
| This theorem is referenced by: nordeq 6332 ordn2lp 6333 ordtri3or 6345 ordtri1 6346 ordtri3 6349 orddisj 6351 ordunidif 6363 ordnbtwn 6408 onirri 6427 onssneli 6430 epweon 7716 onprc 7719 nlimsucg 7780 nnlim 7818 limom 7820 soseq 8097 smo11 8292 smoord 8293 tfrlem13 8317 omopth2 8507 cofonr 8597 naddcllem 8599 limensuci 9075 infensuc 9077 ordtypelem9 9421 cantnfp1lem3 9579 cantnfp1 9580 oemapvali 9583 tskwe 9852 dif1card 9910 dju1p1e2ALT 10075 nnadju 10098 pwsdompw 10103 cflim2 10163 fin23lem24 10222 fin23lem26 10225 axdc3lem4 10353 ttukeylem7 10415 canthp1lem2 10553 inar1 10675 gruina 10718 grur1 10720 addnidpi 10801 fzennn 13879 hashp1i 14314 noseponlem 27606 noextend 27608 noextenddif 27610 noextendlt 27611 noextendgt 27612 fvnobday 27620 nosepssdm 27628 nosupbnd1lem3 27652 nosupbnd1lem5 27654 nosupbnd2lem1 27657 noinfbnd1lem3 27667 noinfbnd1lem5 27669 noinfbnd2lem1 27672 noetasuplem4 27678 noetainflem4 27682 sucneqond 37432 oaordnrex 43415 omnord1ex 43424 oenord1ex 43435 cantnfresb 43444 tfsconcatb0 43464 nlimsuc 43561 |
| Copyright terms: Public domain | W3C validator |