Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version |
Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 6281 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
2 | efrirr 5570 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 E cep 5494 Fr wfr 5541 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-we 5546 df-ord 6269 |
This theorem is referenced by: nordeq 6285 ordn2lp 6286 ordtri3or 6298 ordtri1 6299 ordtri3 6302 orddisj 6304 ordunidif 6314 ordnbtwn 6356 onirri 6373 onssneli 6376 epweon 7625 onprc 7628 nlimsucg 7689 nnlim 7726 limom 7728 smo11 8195 smoord 8196 tfrlem13 8221 omopth2 8415 limensuci 8940 infensuc 8942 ordtypelem9 9285 cantnfp1lem3 9438 cantnfp1 9439 oemapvali 9442 tskwe 9708 dif1card 9766 dju1p1e2ALT 9930 nnadju 9953 pwsdompw 9960 cflim2 10019 fin23lem24 10078 fin23lem26 10081 axdc3lem4 10209 ttukeylem7 10271 canthp1lem2 10409 inar1 10531 gruina 10574 grur1 10576 addnidpi 10657 fzennn 13688 hashp1i 14118 soseq 33803 naddcllem 33831 noseponlem 33867 noextend 33869 noextenddif 33871 noextendlt 33872 noextendgt 33873 fvnobday 33881 nosepssdm 33889 nosupbnd1lem3 33913 nosupbnd1lem5 33915 nosupbnd2lem1 33918 noinfbnd1lem3 33928 noinfbnd1lem5 33930 noinfbnd2lem1 33933 noetasuplem4 33939 noetainflem4 33943 sucneqond 35536 nlimsuc 41048 |
Copyright terms: Public domain | W3C validator |