| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6321 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5596 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 E cep 5515 Fr wfr 5566 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-eprel 5516 df-fr 5569 df-we 5571 df-ord 6309 |
| This theorem is referenced by: nordeq 6325 ordn2lp 6326 ordtri3or 6338 ordtri1 6339 ordtri3 6342 orddisj 6344 ordunidif 6356 ordnbtwn 6401 onirri 6420 onssneli 6423 epweon 7708 onprc 7711 nlimsucg 7772 nnlim 7810 limom 7812 soseq 8089 smo11 8284 smoord 8285 tfrlem13 8309 omopth2 8499 cofonr 8589 naddcllem 8591 limensuci 9066 infensuc 9068 ordtypelem9 9412 cantnfp1lem3 9570 cantnfp1 9571 oemapvali 9574 tskwe 9843 dif1card 9901 dju1p1e2ALT 10066 nnadju 10089 pwsdompw 10094 cflim2 10154 fin23lem24 10213 fin23lem26 10216 axdc3lem4 10344 ttukeylem7 10406 canthp1lem2 10544 inar1 10666 gruina 10709 grur1 10711 addnidpi 10792 fzennn 13875 hashp1i 14310 noseponlem 27604 noextend 27606 noextenddif 27608 noextendlt 27609 noextendgt 27610 fvnobday 27618 nosepssdm 27626 nosupbnd1lem3 27650 nosupbnd1lem5 27652 nosupbnd2lem1 27655 noinfbnd1lem3 27665 noinfbnd1lem5 27667 noinfbnd2lem1 27670 noetasuplem4 27676 noetainflem4 27680 sucneqond 37405 oaordnrex 43334 omnord1ex 43343 oenord1ex 43354 cantnfresb 43363 tfsconcatb0 43383 nlimsuc 43480 |
| Copyright terms: Public domain | W3C validator |