Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version |
Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 6266 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
2 | efrirr 5561 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 E cep 5485 Fr wfr 5532 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: nordeq 6270 ordn2lp 6271 ordtri3or 6283 ordtri1 6284 ordtri3 6287 orddisj 6289 ordunidif 6299 ordnbtwn 6341 onirri 6358 onssneli 6361 onprc 7605 nlimsucg 7664 nnlim 7701 limom 7703 smo11 8166 smoord 8167 tfrlem13 8192 omopth2 8377 limensuci 8889 infensuc 8891 ordtypelem9 9215 cantnfp1lem3 9368 cantnfp1 9369 oemapvali 9372 tskwe 9639 dif1card 9697 dju1p1e2ALT 9861 nnadju 9884 pwsdompw 9891 cflim2 9950 fin23lem24 10009 fin23lem26 10012 axdc3lem4 10140 ttukeylem7 10202 canthp1lem2 10340 inar1 10462 gruina 10505 grur1 10507 addnidpi 10588 fzennn 13616 hashp1i 14046 soseq 33730 naddcllem 33758 noseponlem 33794 noextend 33796 noextenddif 33798 noextendlt 33799 noextendgt 33800 fvnobday 33808 nosepssdm 33816 nosupbnd1lem3 33840 nosupbnd1lem5 33842 nosupbnd2lem1 33845 noinfbnd1lem3 33855 noinfbnd1lem5 33857 noinfbnd2lem1 33860 noetasuplem4 33866 noetainflem4 33870 sucneqond 35463 |
Copyright terms: Public domain | W3C validator |