| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordirr | Structured version Visualization version GIF version | ||
| Description: No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 6347 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | efrirr 5618 | . 2 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 E cep 5537 Fr wfr 5588 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-fr 5591 df-we 5593 df-ord 6335 |
| This theorem is referenced by: nordeq 6351 ordn2lp 6352 ordtri3or 6364 ordtri1 6365 ordtri3 6368 orddisj 6370 ordunidif 6382 ordnbtwn 6427 onirri 6447 onssneli 6450 epweon 7751 onprc 7754 nlimsucg 7818 nnlim 7856 limom 7858 soseq 8138 smo11 8333 smoord 8334 tfrlem13 8358 omopth2 8548 cofonr 8638 naddcllem 8640 limensuci 9117 infensuc 9119 ordtypelem9 9479 cantnfp1lem3 9633 cantnfp1 9634 oemapvali 9637 tskwe 9903 dif1card 9963 dju1p1e2ALT 10128 nnadju 10151 pwsdompw 10156 cflim2 10216 fin23lem24 10275 fin23lem26 10278 axdc3lem4 10406 ttukeylem7 10468 canthp1lem2 10606 inar1 10728 gruina 10771 grur1 10773 addnidpi 10854 fzennn 13933 hashp1i 14368 noseponlem 27576 noextend 27578 noextenddif 27580 noextendlt 27581 noextendgt 27582 fvnobday 27590 nosepssdm 27598 nosupbnd1lem3 27622 nosupbnd1lem5 27624 nosupbnd2lem1 27627 noinfbnd1lem3 27637 noinfbnd1lem5 27639 noinfbnd2lem1 27642 noetasuplem4 27648 noetainflem4 27652 sucneqond 37353 oaordnrex 43284 omnord1ex 43293 oenord1ex 43304 cantnfresb 43313 tfsconcatb0 43333 nlimsuc 43430 |
| Copyright terms: Public domain | W3C validator |