| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5569 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5521 Fr wfr 5564 We wwe 5566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5569 |
| This theorem is referenced by: wefrc 5608 wereu 5610 wereu2 5611 tz6.26 6294 wfi 6296 wfisg 6298 wfis2fg 6300 ordfr 6321 wexp 8060 wfrfun 8253 wfrresex 8254 wfr2a 8255 wfr1 8256 wofib 9431 wemapso 9437 wemapso2lem 9438 cflim2 10154 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwe2 10534 weiunwe 36513 welb 37775 fnwe2lem2 43143 onfrALTlem3 44636 onfrALTlem3VD 44978 |
| Copyright terms: Public domain | W3C validator |