Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5537 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5493 Fr wfr 5532 We wwe 5534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-we 5537 |
This theorem is referenced by: wefrc 5574 wereu 5576 wereu2 5577 tz6.26 6235 wfi 6238 wfisg 6241 wfis2fg 6244 ordfr 6266 wexp 7942 wfrlem14OLD 8124 wfrfun 8134 wfrresex 8135 wfr2a 8136 wfr1 8137 wofib 9234 wemapso 9240 wemapso2lem 9241 cflim2 9950 fpwwe2lem11 10328 fpwwe2lem12 10329 fpwwe2 10330 welb 35821 fnwe2lem2 40792 onfrALTlem3 42053 onfrALTlem3VD 42396 |
Copyright terms: Public domain | W3C validator |