| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5608 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5560 Fr wfr 5603 We wwe 5605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5608 |
| This theorem is referenced by: wefrc 5648 wereu 5650 wereu2 5651 tz6.26 6336 wfi 6339 wfisg 6342 wfis2fg 6345 ordfr 6367 wexp 8127 wfrlem14OLD 8334 wfrfun 8344 wfrresex 8345 wfr2a 8346 wfr1 8347 wofib 9557 wemapso 9563 wemapso2lem 9564 cflim2 10275 fpwwe2lem11 10653 fpwwe2lem12 10654 fpwwe2 10655 weiunwe 36433 welb 37706 fnwe2lem2 43022 onfrALTlem3 44517 onfrALTlem3VD 44859 |
| Copyright terms: Public domain | W3C validator |