| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5608 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5560 Fr wfr 5603 We wwe 5605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5608 |
| This theorem is referenced by: wefrc 5648 wereu 5650 wereu2 5651 tz6.26 6336 wfi 6339 wfisg 6342 wfis2fg 6345 ordfr 6367 wexp 8129 wfrlem14OLD 8336 wfrfun 8346 wfrresex 8347 wfr2a 8348 wfr1 8349 wofib 9559 wemapso 9565 wemapso2lem 9566 cflim2 10277 fpwwe2lem11 10655 fpwwe2lem12 10656 fpwwe2 10657 weiunwe 36487 welb 37760 fnwe2lem2 43075 onfrALTlem3 44569 onfrALTlem3VD 44911 |
| Copyright terms: Public domain | W3C validator |