| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5593 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5545 Fr wfr 5588 We wwe 5590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5593 |
| This theorem is referenced by: wefrc 5632 wereu 5634 wereu2 5635 tz6.26 6320 wfi 6322 wfisg 6324 wfis2fg 6326 ordfr 6347 wexp 8109 wfrfun 8302 wfrresex 8303 wfr2a 8304 wfr1 8305 wofib 9498 wemapso 9504 wemapso2lem 9505 cflim2 10216 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 weiunwe 36457 welb 37730 fnwe2lem2 43040 onfrALTlem3 44534 onfrALTlem3VD 44876 |
| Copyright terms: Public domain | W3C validator |