![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5606 Fr wfr 5649 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-we 5654 |
This theorem is referenced by: wefrc 5694 wereu 5696 wereu2 5697 tz6.26 6379 wfi 6382 wfisg 6385 wfis2fg 6388 ordfr 6410 wexp 8171 wfrlem14OLD 8378 wfrfun 8388 wfrresex 8389 wfr2a 8390 wfr1 8391 wofib 9614 wemapso 9620 wemapso2lem 9621 cflim2 10332 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwe2 10712 weiunwe 36435 welb 37696 fnwe2lem2 43008 onfrALTlem3 44515 onfrALTlem3VD 44858 |
Copyright terms: Public domain | W3C validator |