Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5546 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5502 Fr wfr 5541 We wwe 5543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-we 5546 |
This theorem is referenced by: wefrc 5583 wereu 5585 wereu2 5586 tz6.26 6250 wfi 6253 wfisg 6256 wfis2fg 6259 ordfr 6281 wexp 7971 wfrlem14OLD 8153 wfrfun 8163 wfrresex 8164 wfr2a 8165 wfr1 8166 wofib 9304 wemapso 9310 wemapso2lem 9311 cflim2 10019 fpwwe2lem11 10397 fpwwe2lem12 10398 fpwwe2 10399 welb 35894 fnwe2lem2 40876 onfrALTlem3 42164 onfrALTlem3VD 42507 |
Copyright terms: Public domain | W3C validator |