Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5571 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5525 Fr wfr 5566 We wwe 5568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-we 5571 |
This theorem is referenced by: wefrc 5608 wereu 5610 wereu2 5611 tz6.26 6280 wfi 6283 wfisg 6286 wfis2fg 6289 ordfr 6311 wexp 8030 wfrlem14OLD 8215 wfrfun 8225 wfrresex 8226 wfr2a 8227 wfr1 8228 wofib 9394 wemapso 9400 wemapso2lem 9401 cflim2 10112 fpwwe2lem11 10490 fpwwe2lem12 10491 fpwwe2 10492 welb 35992 fnwe2lem2 41127 onfrALTlem3 42474 onfrALTlem3VD 42817 |
Copyright terms: Public domain | W3C validator |