MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wefr Structured version   Visualization version   GIF version

Theorem wefr 5678
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wefr (𝑅 We 𝐴𝑅 Fr 𝐴)

Proof of Theorem wefr
StepHypRef Expression
1 df-we 5642 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
21simplbi 497 1 (𝑅 We 𝐴𝑅 Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Or wor 5595   Fr wfr 5637   We wwe 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-we 5642
This theorem is referenced by:  wefrc  5682  wereu  5684  wereu2  5685  tz6.26  6369  wfi  6372  wfisg  6375  wfis2fg  6378  ordfr  6400  wexp  8153  wfrlem14OLD  8360  wfrfun  8370  wfrresex  8371  wfr2a  8372  wfr1  8373  wofib  9582  wemapso  9588  wemapso2lem  9589  cflim2  10300  fpwwe2lem11  10678  fpwwe2lem12  10679  fpwwe2  10680  weiunwe  36451  welb  37722  fnwe2lem2  43039  onfrALTlem3  44541  onfrALTlem3VD  44884
  Copyright terms: Public domain W3C validator