![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5642 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5595 Fr wfr 5637 We wwe 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-we 5642 |
This theorem is referenced by: wefrc 5682 wereu 5684 wereu2 5685 tz6.26 6369 wfi 6372 wfisg 6375 wfis2fg 6378 ordfr 6400 wexp 8153 wfrlem14OLD 8360 wfrfun 8370 wfrresex 8371 wfr2a 8372 wfr1 8373 wofib 9582 wemapso 9588 wemapso2lem 9589 cflim2 10300 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwe2 10680 weiunwe 36451 welb 37722 fnwe2lem2 43039 onfrALTlem3 44541 onfrALTlem3VD 44884 |
Copyright terms: Public domain | W3C validator |