| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5574 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5526 Fr wfr 5569 We wwe 5571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5574 |
| This theorem is referenced by: wefrc 5613 wereu 5615 wereu2 5616 tz6.26 6295 wfi 6297 wfisg 6299 wfis2fg 6301 ordfr 6322 wexp 8063 wfrfun 8256 wfrresex 8257 wfr2a 8258 wfr1 8259 wofib 9437 wemapso 9443 wemapso2lem 9444 cflim2 10157 fpwwe2lem11 10535 fpwwe2lem12 10536 fpwwe2 10537 weiunwe 36463 welb 37736 fnwe2lem2 43044 onfrALTlem3 44538 onfrALTlem3VD 44880 |
| Copyright terms: Public domain | W3C validator |