MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wefr Structured version   Visualization version   GIF version

Theorem wefr 5604
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wefr (𝑅 We 𝐴𝑅 Fr 𝐴)

Proof of Theorem wefr
StepHypRef Expression
1 df-we 5571 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
21simplbi 498 1 (𝑅 We 𝐴𝑅 Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Or wor 5525   Fr wfr 5566   We wwe 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-we 5571
This theorem is referenced by:  wefrc  5608  wereu  5610  wereu2  5611  tz6.26  6280  wfi  6283  wfisg  6286  wfis2fg  6289  ordfr  6311  wexp  8030  wfrlem14OLD  8215  wfrfun  8225  wfrresex  8226  wfr2a  8227  wfr1  8228  wofib  9394  wemapso  9400  wemapso2lem  9401  cflim2  10112  fpwwe2lem11  10490  fpwwe2lem12  10491  fpwwe2  10492  welb  35992  fnwe2lem2  41127  onfrALTlem3  42474  onfrALTlem3VD  42817
  Copyright terms: Public domain W3C validator