| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5596 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5548 Fr wfr 5591 We wwe 5593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5596 |
| This theorem is referenced by: wefrc 5635 wereu 5637 wereu2 5638 tz6.26 6323 wfi 6325 wfisg 6327 wfis2fg 6329 ordfr 6350 wexp 8112 wfrfun 8305 wfrresex 8306 wfr2a 8307 wfr1 8308 wofib 9505 wemapso 9511 wemapso2lem 9512 cflim2 10223 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 weiunwe 36464 welb 37737 fnwe2lem2 43047 onfrALTlem3 44541 onfrALTlem3VD 44883 |
| Copyright terms: Public domain | W3C validator |