| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version | ||
| Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5586 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5538 Fr wfr 5581 We wwe 5583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5586 |
| This theorem is referenced by: wefrc 5625 wereu 5627 wereu2 5628 tz6.26 6308 wfi 6310 wfisg 6312 wfis2fg 6314 ordfr 6335 wexp 8086 wfrfun 8279 wfrresex 8280 wfr2a 8281 wfr1 8282 wofib 9474 wemapso 9480 wemapso2lem 9481 cflim2 10192 fpwwe2lem11 10570 fpwwe2lem12 10571 fpwwe2 10572 weiunwe 36450 welb 37723 fnwe2lem2 43033 onfrALTlem3 44527 onfrALTlem3VD 44869 |
| Copyright terms: Public domain | W3C validator |