![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6409 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 5294 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 579 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 Tr wtr 5283 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-ord 6398 |
This theorem is referenced by: onfr 6434 onelss 6437 ordtri2or2 6494 onfununi 8397 smores3 8409 tfrlem1 8432 tfrlem9a 8442 tz7.44-2 8463 tz7.44-3 8464 oaabslem 8703 oaabs2 8705 omabslem 8706 omabs 8707 findcard3 9346 findcard3OLD 9347 nnsdomg 9363 nnsdomgOLD 9364 ordiso2 9584 ordtypelem2 9588 ordtypelem6 9592 ordtypelem7 9593 cantnf 9762 cnfcomlem 9768 ttrcltr 9785 cardmin2 10068 infxpenlem 10082 iunfictbso 10183 dfac12lem2 10214 dfac12lem3 10215 unctb 10273 ackbij2lem1 10287 ackbij1lem3 10290 ackbij1lem18 10305 ackbij2 10311 ttukeylem6 10583 ttukeylem7 10584 alephexp1 10648 fpwwe2lem7 10706 pwfseqlem3 10729 pwdjundom 10736 fz1isolem 14510 noinfbday 27783 onsuct0 36407 finxpreclem4 37360 nadd2rabtr 43346 grur1cld 44201 |
Copyright terms: Public domain | W3C validator |