| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6334 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5220 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 Tr wtr 5209 Ord word 6319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-ord 6323 |
| This theorem is referenced by: onfr 6359 onelss 6362 ordtri2or2 6421 onfununi 8287 smores3 8299 tfrlem1 8321 tfrlem9a 8331 tz7.44-2 8352 tz7.44-3 8353 oaabslem 8588 oaabs2 8590 omabslem 8591 omabs 8592 findcard3 9205 findcard3OLD 9206 nnsdomg 9222 nnsdomgOLD 9223 ordiso2 9444 ordtypelem2 9448 ordtypelem6 9452 ordtypelem7 9453 cantnf 9622 cnfcomlem 9628 ttrcltr 9645 cardmin2 9928 infxpenlem 9942 iunfictbso 10043 dfac12lem2 10074 dfac12lem3 10075 unctb 10133 ackbij2lem1 10147 ackbij1lem3 10150 ackbij1lem18 10165 ackbij2 10171 ttukeylem6 10443 ttukeylem7 10444 alephexp1 10508 fpwwe2lem7 10566 pwfseqlem3 10589 pwdjundom 10596 fz1isolem 14402 noinfbday 27608 onsuct0 36402 finxpreclem4 37355 nadd2rabtr 43346 grur1cld 44194 |
| Copyright terms: Public domain | W3C validator |