Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6265 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 5196 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 579 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 Tr wtr 5187 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-ord 6254 |
This theorem is referenced by: onfr 6290 onelss 6293 ordtri2or2 6347 onfununi 8143 smores3 8155 tfrlem1 8178 tfrlem9a 8188 tz7.44-2 8209 tz7.44-3 8210 oaabslem 8437 oaabs2 8439 omabslem 8440 omabs 8441 findcard3 8987 nnsdomg 9003 ordiso2 9204 ordtypelem2 9208 ordtypelem6 9212 ordtypelem7 9213 cantnf 9381 cnfcomlem 9387 cardmin2 9688 infxpenlem 9700 iunfictbso 9801 dfac12lem2 9831 dfac12lem3 9832 unctb 9892 ackbij2lem1 9906 ackbij1lem3 9909 ackbij1lem18 9924 ackbij2 9930 ttukeylem6 10201 ttukeylem7 10202 alephexp1 10266 fpwwe2lem7 10324 pwfseqlem3 10347 pwdjundom 10354 fz1isolem 14103 ttrcltr 33702 noinfbday 33850 onsuct0 34557 finxpreclem4 35492 grur1cld 41739 |
Copyright terms: Public domain | W3C validator |