| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6321 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5209 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 Tr wtr 5199 Ord word 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3438 df-ss 3920 df-uni 4859 df-tr 5200 df-ord 6310 |
| This theorem is referenced by: onfr 6346 onelss 6349 ordtri2or2 6408 onfununi 8264 smores3 8276 tfrlem1 8298 tfrlem9a 8308 tz7.44-2 8329 tz7.44-3 8330 oaabslem 8565 oaabs2 8567 omabslem 8568 omabs 8569 findcard3 9172 nnsdomg 9188 ordiso2 9407 ordtypelem2 9411 ordtypelem6 9415 ordtypelem7 9416 cantnf 9589 cnfcomlem 9595 ttrcltr 9612 cardmin2 9895 infxpenlem 9907 iunfictbso 10008 dfac12lem2 10039 dfac12lem3 10040 unctb 10098 ackbij2lem1 10112 ackbij1lem3 10115 ackbij1lem18 10130 ackbij2 10136 ttukeylem6 10408 ttukeylem7 10409 alephexp1 10473 fpwwe2lem7 10531 pwfseqlem3 10554 pwdjundom 10561 fz1isolem 14368 noinfbday 27630 onsuct0 36415 finxpreclem4 37368 nadd2rabtr 43357 grur1cld 44205 |
| Copyright terms: Public domain | W3C validator |