MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelss Structured version   Visualization version   GIF version

Theorem ordelss 6322
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 6320 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 5206 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 406 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 580 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897  Tr wtr 5196  Ord word 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4857  df-tr 5197  df-ord 6309
This theorem is referenced by:  onfr  6345  onelss  6348  ordtri2or2  6407  onfununi  8261  smores3  8273  tfrlem1  8295  tfrlem9a  8305  tz7.44-2  8326  tz7.44-3  8327  oaabslem  8562  oaabs2  8564  omabslem  8565  omabs  8566  findcard3  9167  nnsdomg  9183  ordiso2  9401  ordtypelem2  9405  ordtypelem6  9409  ordtypelem7  9410  cantnf  9583  cnfcomlem  9589  ttrcltr  9606  cardmin2  9892  infxpenlem  9904  iunfictbso  10005  dfac12lem2  10036  dfac12lem3  10037  unctb  10095  ackbij2lem1  10109  ackbij1lem3  10112  ackbij1lem18  10127  ackbij2  10133  ttukeylem6  10405  ttukeylem7  10406  alephexp1  10470  fpwwe2lem7  10528  pwfseqlem3  10551  pwdjundom  10558  fz1isolem  14368  noinfbday  27659  onsuct0  36483  finxpreclem4  37436  nadd2rabtr  43425  grur1cld  44273
  Copyright terms: Public domain W3C validator