| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6366 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5240 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 Tr wtr 5229 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 df-ord 6355 |
| This theorem is referenced by: onfr 6391 onelss 6394 ordtri2or2 6453 onfununi 8355 smores3 8367 tfrlem1 8390 tfrlem9a 8400 tz7.44-2 8421 tz7.44-3 8422 oaabslem 8659 oaabs2 8661 omabslem 8662 omabs 8663 findcard3 9290 findcard3OLD 9291 nnsdomg 9307 nnsdomgOLD 9308 ordiso2 9529 ordtypelem2 9533 ordtypelem6 9537 ordtypelem7 9538 cantnf 9707 cnfcomlem 9713 ttrcltr 9730 cardmin2 10013 infxpenlem 10027 iunfictbso 10128 dfac12lem2 10159 dfac12lem3 10160 unctb 10218 ackbij2lem1 10232 ackbij1lem3 10235 ackbij1lem18 10250 ackbij2 10256 ttukeylem6 10528 ttukeylem7 10529 alephexp1 10593 fpwwe2lem7 10651 pwfseqlem3 10674 pwdjundom 10681 fz1isolem 14479 noinfbday 27684 onsuct0 36459 finxpreclem4 37412 nadd2rabtr 43408 grur1cld 44256 |
| Copyright terms: Public domain | W3C validator |