| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6349 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5228 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 Tr wtr 5217 Ord word 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 df-ord 6338 |
| This theorem is referenced by: onfr 6374 onelss 6377 ordtri2or2 6436 onfununi 8313 smores3 8325 tfrlem1 8347 tfrlem9a 8357 tz7.44-2 8378 tz7.44-3 8379 oaabslem 8614 oaabs2 8616 omabslem 8617 omabs 8618 findcard3 9236 findcard3OLD 9237 nnsdomg 9253 nnsdomgOLD 9254 ordiso2 9475 ordtypelem2 9479 ordtypelem6 9483 ordtypelem7 9484 cantnf 9653 cnfcomlem 9659 ttrcltr 9676 cardmin2 9959 infxpenlem 9973 iunfictbso 10074 dfac12lem2 10105 dfac12lem3 10106 unctb 10164 ackbij2lem1 10178 ackbij1lem3 10181 ackbij1lem18 10196 ackbij2 10202 ttukeylem6 10474 ttukeylem7 10475 alephexp1 10539 fpwwe2lem7 10597 pwfseqlem3 10620 pwdjundom 10627 fz1isolem 14433 noinfbday 27639 onsuct0 36436 finxpreclem4 37389 nadd2rabtr 43380 grur1cld 44228 |
| Copyright terms: Public domain | W3C validator |