Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6280 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 5200 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 407 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 Tr wtr 5191 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 df-ord 6269 |
This theorem is referenced by: onfr 6305 onelss 6308 ordtri2or2 6362 onfununi 8172 smores3 8184 tfrlem1 8207 tfrlem9a 8217 tz7.44-2 8238 tz7.44-3 8239 oaabslem 8477 oaabs2 8479 omabslem 8480 omabs 8481 findcard3 9057 nnsdomg 9073 ordiso2 9274 ordtypelem2 9278 ordtypelem6 9282 ordtypelem7 9283 cantnf 9451 cnfcomlem 9457 ttrcltr 9474 cardmin2 9757 infxpenlem 9769 iunfictbso 9870 dfac12lem2 9900 dfac12lem3 9901 unctb 9961 ackbij2lem1 9975 ackbij1lem3 9978 ackbij1lem18 9993 ackbij2 9999 ttukeylem6 10270 ttukeylem7 10271 alephexp1 10335 fpwwe2lem7 10393 pwfseqlem3 10416 pwdjundom 10423 fz1isolem 14175 noinfbday 33923 onsuct0 34630 finxpreclem4 35565 grur1cld 41850 |
Copyright terms: Public domain | W3C validator |