Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6277 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 5204 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 579 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3891 Tr wtr 5195 Ord word 6262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-in 3898 df-ss 3908 df-uni 4845 df-tr 5196 df-ord 6266 |
This theorem is referenced by: onfr 6302 onelss 6305 ordtri2or2 6359 onfununi 8156 smores3 8168 tfrlem1 8191 tfrlem9a 8201 tz7.44-2 8222 tz7.44-3 8223 oaabslem 8451 oaabs2 8453 omabslem 8454 omabs 8455 findcard3 9018 nnsdomg 9034 ordiso2 9235 ordtypelem2 9239 ordtypelem6 9243 ordtypelem7 9244 cantnf 9412 cnfcomlem 9418 ttrcltr 9435 cardmin2 9741 infxpenlem 9753 iunfictbso 9854 dfac12lem2 9884 dfac12lem3 9885 unctb 9945 ackbij2lem1 9959 ackbij1lem3 9962 ackbij1lem18 9977 ackbij2 9983 ttukeylem6 10254 ttukeylem7 10255 alephexp1 10319 fpwwe2lem7 10377 pwfseqlem3 10400 pwdjundom 10407 fz1isolem 14156 noinfbday 33902 onsuct0 34609 finxpreclem4 35544 grur1cld 41803 |
Copyright terms: Public domain | W3C validator |