| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6346 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5225 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 Tr wtr 5214 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-ord 6335 |
| This theorem is referenced by: onfr 6371 onelss 6374 ordtri2or2 6433 onfununi 8310 smores3 8322 tfrlem1 8344 tfrlem9a 8354 tz7.44-2 8375 tz7.44-3 8376 oaabslem 8611 oaabs2 8613 omabslem 8614 omabs 8615 findcard3 9229 findcard3OLD 9230 nnsdomg 9246 nnsdomgOLD 9247 ordiso2 9468 ordtypelem2 9472 ordtypelem6 9476 ordtypelem7 9477 cantnf 9646 cnfcomlem 9652 ttrcltr 9669 cardmin2 9952 infxpenlem 9966 iunfictbso 10067 dfac12lem2 10098 dfac12lem3 10099 unctb 10157 ackbij2lem1 10171 ackbij1lem3 10174 ackbij1lem18 10189 ackbij2 10195 ttukeylem6 10467 ttukeylem7 10468 alephexp1 10532 fpwwe2lem7 10590 pwfseqlem3 10613 pwdjundom 10620 fz1isolem 14426 noinfbday 27632 onsuct0 36429 finxpreclem4 37382 nadd2rabtr 43373 grur1cld 44221 |
| Copyright terms: Public domain | W3C validator |