MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelss Structured version   Visualization version   GIF version

Theorem ordelss 6348
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 6346 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 5225 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 406 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 580 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914  Tr wtr 5214  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215  df-ord 6335
This theorem is referenced by:  onfr  6371  onelss  6374  ordtri2or2  6433  onfununi  8310  smores3  8322  tfrlem1  8344  tfrlem9a  8354  tz7.44-2  8375  tz7.44-3  8376  oaabslem  8611  oaabs2  8613  omabslem  8614  omabs  8615  findcard3  9229  findcard3OLD  9230  nnsdomg  9246  nnsdomgOLD  9247  ordiso2  9468  ordtypelem2  9472  ordtypelem6  9476  ordtypelem7  9477  cantnf  9646  cnfcomlem  9652  ttrcltr  9669  cardmin2  9952  infxpenlem  9966  iunfictbso  10067  dfac12lem2  10098  dfac12lem3  10099  unctb  10157  ackbij2lem1  10171  ackbij1lem3  10174  ackbij1lem18  10189  ackbij2  10195  ttukeylem6  10467  ttukeylem7  10468  alephexp1  10532  fpwwe2lem7  10590  pwfseqlem3  10613  pwdjundom  10620  fz1isolem  14426  noinfbday  27632  onsuct0  36429  finxpreclem4  37382  nadd2rabtr  43373  grur1cld  44221
  Copyright terms: Public domain W3C validator