| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6320 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 5206 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 Tr wtr 5196 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-ord 6309 |
| This theorem is referenced by: onfr 6345 onelss 6348 ordtri2or2 6407 onfununi 8261 smores3 8273 tfrlem1 8295 tfrlem9a 8305 tz7.44-2 8326 tz7.44-3 8327 oaabslem 8562 oaabs2 8564 omabslem 8565 omabs 8566 findcard3 9167 nnsdomg 9183 ordiso2 9401 ordtypelem2 9405 ordtypelem6 9409 ordtypelem7 9410 cantnf 9583 cnfcomlem 9589 ttrcltr 9606 cardmin2 9892 infxpenlem 9904 iunfictbso 10005 dfac12lem2 10036 dfac12lem3 10037 unctb 10095 ackbij2lem1 10109 ackbij1lem3 10112 ackbij1lem18 10127 ackbij2 10133 ttukeylem6 10405 ttukeylem7 10406 alephexp1 10470 fpwwe2lem7 10528 pwfseqlem3 10551 pwdjundom 10558 fz1isolem 14368 noinfbday 27659 onsuct0 36483 finxpreclem4 37436 nadd2rabtr 43425 grur1cld 44273 |
| Copyright terms: Public domain | W3C validator |