MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Visualization version   GIF version

Theorem onfr 6396
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7776 (through epweon 7774) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr E Fr On

Proof of Theorem onfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5643 . 2 ( E Fr On ↔ ∀𝑥((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅))
2 n0 4333 . . . 4 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
3 ineq2 4194 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥𝑧) = (𝑥𝑦))
43eqeq1d 2738 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥𝑧) = ∅ ↔ (𝑥𝑦) = ∅))
54rspcev 3606 . . . . . . . 8 ((𝑦𝑥 ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
65adantll 714 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
7 inss1 4217 . . . . . . . 8 (𝑥𝑦) ⊆ 𝑥
8 ssel2 3958 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
9 eloni 6367 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
10 ordfr 6372 . . . . . . . . . . 11 (Ord 𝑦 → E Fr 𝑦)
118, 9, 103syl 18 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → E Fr 𝑦)
12 inss2 4218 . . . . . . . . . . 11 (𝑥𝑦) ⊆ 𝑦
13 vex 3468 . . . . . . . . . . . . 13 𝑥 ∈ V
1413inex1 5292 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
1514epfrc 5644 . . . . . . . . . . 11 (( E Fr 𝑦 ∧ (𝑥𝑦) ⊆ 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1612, 15mp3an2 1451 . . . . . . . . . 10 (( E Fr 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1711, 16sylan 580 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
18 inass 4208 . . . . . . . . . . . . 13 ((𝑥𝑦) ∩ 𝑧) = (𝑥 ∩ (𝑦𝑧))
198, 9syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → Ord 𝑦)
20 elinel2 4182 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑦)
21 ordelss 6373 . . . . . . . . . . . . . . . 16 ((Ord 𝑦𝑧𝑦) → 𝑧𝑦)
2219, 20, 21syl2an 596 . . . . . . . . . . . . . . 15 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 sseqin2 4203 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑦𝑧) = 𝑧)
2422, 23sylib 218 . . . . . . . . . . . . . 14 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑦𝑧) = 𝑧)
2524ineq2d 4200 . . . . . . . . . . . . 13 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑥 ∩ (𝑦𝑧)) = (𝑥𝑧))
2618, 25eqtrid 2783 . . . . . . . . . . . 12 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥𝑦) ∩ 𝑧) = (𝑥𝑧))
2726eqeq1d 2738 . . . . . . . . . . 11 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (((𝑥𝑦) ∩ 𝑧) = ∅ ↔ (𝑥𝑧) = ∅))
2827rexbidva 3163 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
2928adantr 480 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
3017, 29mpbid 232 . . . . . . . 8 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅)
31 ssrexv 4033 . . . . . . . 8 ((𝑥𝑦) ⊆ 𝑥 → (∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
327, 30, 31mpsyl 68 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
336, 32pm2.61dane 3020 . . . . . 6 ((𝑥 ⊆ On ∧ 𝑦𝑥) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
3433ex 412 . . . . 5 (𝑥 ⊆ On → (𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3534exlimdv 1933 . . . 4 (𝑥 ⊆ On → (∃𝑦 𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
362, 35biimtrid 242 . . 3 (𝑥 ⊆ On → (𝑥 ≠ ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3736imp 406 . 2 ((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
381, 37mpgbir 1799 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wrex 3061  cin 3930  wss 3931  c0 4313   E cep 5557   Fr wfr 5608  Ord word 6356  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361
This theorem is referenced by:  epweon  7774  epweonALT  7775  on2recsfn  8684  on2recsov  8685  on2ind  8686  on3ind  8687  wffr  44953
  Copyright terms: Public domain W3C validator