MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Visualization version   GIF version

Theorem onfr 6223
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7487 (through epweon 7486) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr E Fr On

Proof of Theorem onfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5533 . 2 ( E Fr On ↔ ∀𝑥((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅))
2 n0 4307 . . . 4 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
3 ineq2 4180 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥𝑧) = (𝑥𝑦))
43eqeq1d 2820 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥𝑧) = ∅ ↔ (𝑥𝑦) = ∅))
54rspcev 3620 . . . . . . . 8 ((𝑦𝑥 ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
65adantll 710 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
7 inss1 4202 . . . . . . . 8 (𝑥𝑦) ⊆ 𝑥
8 ssel2 3959 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
9 eloni 6194 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
10 ordfr 6199 . . . . . . . . . . 11 (Ord 𝑦 → E Fr 𝑦)
118, 9, 103syl 18 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → E Fr 𝑦)
12 inss2 4203 . . . . . . . . . . 11 (𝑥𝑦) ⊆ 𝑦
13 vex 3495 . . . . . . . . . . . . 13 𝑥 ∈ V
1413inex1 5212 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
1514epfrc 5534 . . . . . . . . . . 11 (( E Fr 𝑦 ∧ (𝑥𝑦) ⊆ 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1612, 15mp3an2 1440 . . . . . . . . . 10 (( E Fr 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1711, 16sylan 580 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
18 inass 4193 . . . . . . . . . . . . 13 ((𝑥𝑦) ∩ 𝑧) = (𝑥 ∩ (𝑦𝑧))
198, 9syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → Ord 𝑦)
20 elinel2 4170 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑦)
21 ordelss 6200 . . . . . . . . . . . . . . . 16 ((Ord 𝑦𝑧𝑦) → 𝑧𝑦)
2219, 20, 21syl2an 595 . . . . . . . . . . . . . . 15 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 sseqin2 4189 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑦𝑧) = 𝑧)
2422, 23sylib 219 . . . . . . . . . . . . . 14 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑦𝑧) = 𝑧)
2524ineq2d 4186 . . . . . . . . . . . . 13 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑥 ∩ (𝑦𝑧)) = (𝑥𝑧))
2618, 25syl5eq 2865 . . . . . . . . . . . 12 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥𝑦) ∩ 𝑧) = (𝑥𝑧))
2726eqeq1d 2820 . . . . . . . . . . 11 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (((𝑥𝑦) ∩ 𝑧) = ∅ ↔ (𝑥𝑧) = ∅))
2827rexbidva 3293 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
2928adantr 481 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
3017, 29mpbid 233 . . . . . . . 8 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅)
31 ssrexv 4031 . . . . . . . 8 ((𝑥𝑦) ⊆ 𝑥 → (∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
327, 30, 31mpsyl 68 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
336, 32pm2.61dane 3101 . . . . . 6 ((𝑥 ⊆ On ∧ 𝑦𝑥) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
3433ex 413 . . . . 5 (𝑥 ⊆ On → (𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3534exlimdv 1925 . . . 4 (𝑥 ⊆ On → (∃𝑦 𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
362, 35syl5bi 243 . . 3 (𝑥 ⊆ On → (𝑥 ≠ ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3736imp 407 . 2 ((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
381, 37mpgbir 1791 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  cin 3932  wss 3933  c0 4288   E cep 5457   Fr wfr 5504  Ord word 6183  Oncon0 6184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188
This theorem is referenced by:  epweon  7486
  Copyright terms: Public domain W3C validator