MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Visualization version   GIF version

Theorem onfr 6359
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7733 (through epweon 7731) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr E Fr On

Proof of Theorem onfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5615 . 2 ( E Fr On ↔ ∀𝑥((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅))
2 n0 4312 . . . 4 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
3 ineq2 4173 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥𝑧) = (𝑥𝑦))
43eqeq1d 2731 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥𝑧) = ∅ ↔ (𝑥𝑦) = ∅))
54rspcev 3585 . . . . . . . 8 ((𝑦𝑥 ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
65adantll 714 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
7 inss1 4196 . . . . . . . 8 (𝑥𝑦) ⊆ 𝑥
8 ssel2 3938 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
9 eloni 6330 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
10 ordfr 6335 . . . . . . . . . . 11 (Ord 𝑦 → E Fr 𝑦)
118, 9, 103syl 18 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → E Fr 𝑦)
12 inss2 4197 . . . . . . . . . . 11 (𝑥𝑦) ⊆ 𝑦
13 vex 3448 . . . . . . . . . . . . 13 𝑥 ∈ V
1413inex1 5267 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
1514epfrc 5616 . . . . . . . . . . 11 (( E Fr 𝑦 ∧ (𝑥𝑦) ⊆ 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1612, 15mp3an2 1451 . . . . . . . . . 10 (( E Fr 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1711, 16sylan 580 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
18 inass 4187 . . . . . . . . . . . . 13 ((𝑥𝑦) ∩ 𝑧) = (𝑥 ∩ (𝑦𝑧))
198, 9syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → Ord 𝑦)
20 elinel2 4161 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑦)
21 ordelss 6336 . . . . . . . . . . . . . . . 16 ((Ord 𝑦𝑧𝑦) → 𝑧𝑦)
2219, 20, 21syl2an 596 . . . . . . . . . . . . . . 15 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 sseqin2 4182 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑦𝑧) = 𝑧)
2422, 23sylib 218 . . . . . . . . . . . . . 14 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑦𝑧) = 𝑧)
2524ineq2d 4179 . . . . . . . . . . . . 13 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑥 ∩ (𝑦𝑧)) = (𝑥𝑧))
2618, 25eqtrid 2776 . . . . . . . . . . . 12 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥𝑦) ∩ 𝑧) = (𝑥𝑧))
2726eqeq1d 2731 . . . . . . . . . . 11 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (((𝑥𝑦) ∩ 𝑧) = ∅ ↔ (𝑥𝑧) = ∅))
2827rexbidva 3155 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
2928adantr 480 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
3017, 29mpbid 232 . . . . . . . 8 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅)
31 ssrexv 4013 . . . . . . . 8 ((𝑥𝑦) ⊆ 𝑥 → (∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
327, 30, 31mpsyl 68 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
336, 32pm2.61dane 3012 . . . . . 6 ((𝑥 ⊆ On ∧ 𝑦𝑥) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
3433ex 412 . . . . 5 (𝑥 ⊆ On → (𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3534exlimdv 1933 . . . 4 (𝑥 ⊆ On → (∃𝑦 𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
362, 35biimtrid 242 . . 3 (𝑥 ⊆ On → (𝑥 ≠ ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3736imp 406 . 2 ((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
381, 37mpgbir 1799 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  cin 3910  wss 3911  c0 4292   E cep 5530   Fr wfr 5581  Ord word 6319  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  epweon  7731  epweonALT  7732  on2recsfn  8608  on2recsov  8609  on2ind  8610  on3ind  8611  wffr  44944
  Copyright terms: Public domain W3C validator