MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Visualization version   GIF version

Theorem onfr 6400
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7760 (through epweon 7758) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr E Fr On

Proof of Theorem onfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5660 . 2 ( E Fr On ↔ ∀𝑥((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅))
2 n0 4345 . . . 4 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
3 ineq2 4205 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥𝑧) = (𝑥𝑦))
43eqeq1d 2734 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥𝑧) = ∅ ↔ (𝑥𝑦) = ∅))
54rspcev 3612 . . . . . . . 8 ((𝑦𝑥 ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
65adantll 712 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
7 inss1 4227 . . . . . . . 8 (𝑥𝑦) ⊆ 𝑥
8 ssel2 3976 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
9 eloni 6371 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
10 ordfr 6376 . . . . . . . . . . 11 (Ord 𝑦 → E Fr 𝑦)
118, 9, 103syl 18 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → E Fr 𝑦)
12 inss2 4228 . . . . . . . . . . 11 (𝑥𝑦) ⊆ 𝑦
13 vex 3478 . . . . . . . . . . . . 13 𝑥 ∈ V
1413inex1 5316 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
1514epfrc 5661 . . . . . . . . . . 11 (( E Fr 𝑦 ∧ (𝑥𝑦) ⊆ 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1612, 15mp3an2 1449 . . . . . . . . . 10 (( E Fr 𝑦 ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
1711, 16sylan 580 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅)
18 inass 4218 . . . . . . . . . . . . 13 ((𝑥𝑦) ∩ 𝑧) = (𝑥 ∩ (𝑦𝑧))
198, 9syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → Ord 𝑦)
20 elinel2 4195 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑦)
21 ordelss 6377 . . . . . . . . . . . . . . . 16 ((Ord 𝑦𝑧𝑦) → 𝑧𝑦)
2219, 20, 21syl2an 596 . . . . . . . . . . . . . . 15 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 sseqin2 4214 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑦𝑧) = 𝑧)
2422, 23sylib 217 . . . . . . . . . . . . . 14 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑦𝑧) = 𝑧)
2524ineq2d 4211 . . . . . . . . . . . . 13 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑥 ∩ (𝑦𝑧)) = (𝑥𝑧))
2618, 25eqtrid 2784 . . . . . . . . . . . 12 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥𝑦) ∩ 𝑧) = (𝑥𝑧))
2726eqeq1d 2734 . . . . . . . . . . 11 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ 𝑧 ∈ (𝑥𝑦)) → (((𝑥𝑦) ∩ 𝑧) = ∅ ↔ (𝑥𝑧) = ∅))
2827rexbidva 3176 . . . . . . . . . 10 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
2928adantr 481 . . . . . . . . 9 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → (∃𝑧 ∈ (𝑥𝑦)((𝑥𝑦) ∩ 𝑧) = ∅ ↔ ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅))
3017, 29mpbid 231 . . . . . . . 8 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅)
31 ssrexv 4050 . . . . . . . 8 ((𝑥𝑦) ⊆ 𝑥 → (∃𝑧 ∈ (𝑥𝑦)(𝑥𝑧) = ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
327, 30, 31mpsyl 68 . . . . . . 7 (((𝑥 ⊆ On ∧ 𝑦𝑥) ∧ (𝑥𝑦) ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
336, 32pm2.61dane 3029 . . . . . 6 ((𝑥 ⊆ On ∧ 𝑦𝑥) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
3433ex 413 . . . . 5 (𝑥 ⊆ On → (𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3534exlimdv 1936 . . . 4 (𝑥 ⊆ On → (∃𝑦 𝑦𝑥 → ∃𝑧𝑥 (𝑥𝑧) = ∅))
362, 35biimtrid 241 . . 3 (𝑥 ⊆ On → (𝑥 ≠ ∅ → ∃𝑧𝑥 (𝑥𝑧) = ∅))
3736imp 407 . 2 ((𝑥 ⊆ On ∧ 𝑥 ≠ ∅) → ∃𝑧𝑥 (𝑥𝑧) = ∅)
381, 37mpgbir 1801 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  wrex 3070  cin 3946  wss 3947  c0 4321   E cep 5578   Fr wfr 5627  Ord word 6360  Oncon0 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365
This theorem is referenced by:  epweon  7758  epweonALT  7759  on2recsfn  8662  on2recsov  8663  on2ind  8664  on3ind  8665
  Copyright terms: Public domain W3C validator