![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnn0z | Structured version Visualization version GIF version |
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elnn0z | ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11753 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | elnnz 11845 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
3 | eqcom 2804 | . . 3 ⊢ (𝑁 = 0 ↔ 0 = 𝑁) | |
4 | 2, 3 | orbi12i 909 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ∨ 0 = 𝑁)) |
5 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
6 | 0z 11846 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
7 | eleq1 2872 | . . . . . . 7 ⊢ (0 = 𝑁 → (0 ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
8 | 6, 7 | mpbii 234 | . . . . . 6 ⊢ (0 = 𝑁 → 𝑁 ∈ ℤ) |
9 | 5, 8 | jaoi 852 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∨ 0 = 𝑁) → 𝑁 ∈ ℤ) |
10 | orc 862 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℤ ∨ 0 = 𝑁)) | |
11 | 9, 10 | impbii 210 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∨ 0 = 𝑁) ↔ 𝑁 ∈ ℤ) |
12 | 11 | anbi1i 623 | . . 3 ⊢ (((𝑁 ∈ ℤ ∨ 0 = 𝑁) ∧ (0 < 𝑁 ∨ 0 = 𝑁)) ↔ (𝑁 ∈ ℤ ∧ (0 < 𝑁 ∨ 0 = 𝑁))) |
13 | ordir 1001 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 0 < 𝑁) ∨ 0 = 𝑁) ↔ ((𝑁 ∈ ℤ ∨ 0 = 𝑁) ∧ (0 < 𝑁 ∨ 0 = 𝑁))) | |
14 | 0re 10496 | . . . . 5 ⊢ 0 ∈ ℝ | |
15 | zre 11839 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
16 | leloe 10580 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
17 | 14, 15, 16 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
18 | 17 | pm5.32i 575 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ↔ (𝑁 ∈ ℤ ∧ (0 < 𝑁 ∨ 0 = 𝑁))) |
19 | 12, 13, 18 | 3bitr4i 304 | . 2 ⊢ (((𝑁 ∈ ℤ ∧ 0 < 𝑁) ∨ 0 = 𝑁) ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
20 | 1, 4, 19 | 3bitri 298 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ℝcr 10389 0cc0 10390 < clt 10528 ≤ cle 10529 ℕcn 11492 ℕ0cn0 11751 ℤcz 11835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 |
This theorem is referenced by: zle0orge1 11852 nn0zrab 11865 znn0sub 11883 nn0ind 11931 fnn0ind 11935 fznn0 12853 elfz0ubfz0 12865 elfz0fzfz0 12866 fz0fzelfz0 12867 elfzmlbp 12872 difelfzle 12874 difelfznle 12875 elfzo0z 12933 fzofzim 12938 ubmelm1fzo 12987 flge0nn0 13044 zmodcl 13113 modmuladdnn0 13137 modsumfzodifsn 13166 zsqcl2 13356 swrdnnn0nd 13858 swrdswrdlem 13906 swrdswrd 13907 swrdccatin2 13931 pfxccatin12lem2 13933 pfxccatin12lem3 13934 repswswrd 13986 cshwidxmod 14005 nn0abscl 14510 iseralt 14879 binomrisefac 15233 oexpneg 15531 oddnn02np1 15534 evennn02n 15536 nn0ehalf 15566 nn0oddm1d2 15573 divalglem2 15583 divalglem8 15588 divalglem10 15590 divalgb 15592 bitsinv1lem 15627 dfgcd2 15727 algcvga 15756 hashgcdlem 15958 iserodd 16005 pockthlem 16074 4sqlem14 16127 cshwshashlem2 16263 chfacfscmul0 21154 chfacfpmmul0 21158 taylfvallem1 24632 tayl0 24637 leibpilem1OLD 25204 basellem3 25346 bcmono 25539 gausslemma2dlem0h 25625 2sqnn0 25700 crctcshwlkn0lem7 27280 crctcshwlkn0 27285 clwlkclwwlklem2a1 27456 clwlkclwwlklem2fv2 27460 clwlkclwwlklem2a 27462 wwlksubclwwlk 27523 0nn0m1nnn0 31961 knoppndvlem2 33463 irrapxlem1 38925 rmynn0 39060 rmyabs 39061 jm2.22 39098 jm2.23 39099 jm2.27a 39108 jm2.27c 39110 dvnprodlem1 41794 wallispilem4 41917 stirlinglem5 41927 elaa2lem 42082 etransclem3 42086 etransclem7 42090 etransclem10 42093 etransclem19 42102 etransclem20 42103 etransclem21 42104 etransclem22 42105 etransclem24 42107 etransclem27 42110 zm1nn 43040 eluzge0nn0 43050 elfz2z 43053 2elfz2melfz 43056 subsubelfzo0 43064 oexpnegALTV 43346 nn0oALTV 43365 nn0e 43366 nn0eo 44091 dig1 44171 |
Copyright terms: Public domain | W3C validator |