MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniss Structured version   Visualization version   GIF version

Theorem orduniss 6483
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniss (Ord 𝐴 𝐴𝐴)

Proof of Theorem orduniss
StepHypRef Expression
1 ordtr 6400 . 2 (Ord 𝐴 → Tr 𝐴)
2 df-tr 5266 . 2 (Tr 𝐴 𝐴𝐴)
31, 2sylib 218 1 (Ord 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3963   cuni 4912  Tr wtr 5265  Ord word 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-tr 5266  df-ord 6389
This theorem is referenced by:  orduniorsuc  7850  onfununi  8380  rankuniss  9904  r1limwun  10774  ontgval  36414  onsupneqmaxlim0  43213  onsupnmax  43217
  Copyright terms: Public domain W3C validator