|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version GIF version | ||
| Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| orduniss | ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtr 6397 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | df-tr 5259 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊆ wss 3950 ∪ cuni 4906 Tr wtr 5258 Ord word 6382 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tr 5259 df-ord 6386 | 
| This theorem is referenced by: orduniorsuc 7851 onfununi 8382 rankuniss 9907 r1limwun 10777 ontgval 36433 onsupneqmaxlim0 43241 onsupnmax 43245 | 
| Copyright terms: Public domain | W3C validator |