Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version GIF version |
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
Ref | Expression |
---|---|
orduniss | ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6186 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | df-tr 5137 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3843 ∪ cuni 4796 Tr wtr 5136 Ord word 6171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tr 5137 df-ord 6175 |
This theorem is referenced by: orduniorsuc 7564 onfununi 8007 rankuniss 9368 r1limwun 10236 ontgval 34258 |
Copyright terms: Public domain | W3C validator |