| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version GIF version | ||
| Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| Ref | Expression |
|---|---|
| orduniss | ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6334 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | df-tr 5210 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3911 ∪ cuni 4867 Tr wtr 5209 Ord word 6319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tr 5210 df-ord 6323 |
| This theorem is referenced by: orduniorsuc 7785 onfununi 8287 rankuniss 9795 r1limwun 10665 ontgval 36392 onsupneqmaxlim0 43186 onsupnmax 43190 |
| Copyright terms: Public domain | W3C validator |