| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version GIF version | ||
| Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| Ref | Expression |
|---|---|
| orduniss | ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6321 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | df-tr 5200 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3903 ∪ cuni 4858 Tr wtr 5199 Ord word 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tr 5200 df-ord 6310 |
| This theorem is referenced by: orduniorsuc 7763 onfununi 8264 rankuniss 9762 r1limwun 10630 ontgval 36415 onsupneqmaxlim0 43207 onsupnmax 43211 |
| Copyright terms: Public domain | W3C validator |