Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontgval Structured version   Visualization version   GIF version

Theorem ontgval 33892
Description: The topology generated from an ordinal number 𝐵 is suc 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.)
Assertion
Ref Expression
ontgval (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)

Proof of Theorem ontgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eltg4i 21565 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
2 inex1g 5187 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ V)
3 onss 7485 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
4 ssinss1 4164 . . . . . . . 8 (𝐵 ⊆ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
53, 4syl 17 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
6 ssonuni 7481 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) ∈ V → ((𝐵 ∩ 𝒫 𝑥) ⊆ On → (𝐵 ∩ 𝒫 𝑥) ∈ On))
72, 5, 6sylc 65 . . . . . 6 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ On)
8 eleq1 2877 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → (𝑥 ∈ On ↔ (𝐵 ∩ 𝒫 𝑥) ∈ On))
98biimprd 251 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ∈ On → 𝑥 ∈ On))
101, 7, 9syl2imc 41 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ On))
11 onuni 7488 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ On)
12 suceloni 7508 . . . . . 6 ( 𝐵 ∈ On → suc 𝐵 ∈ On)
1311, 12syl 17 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ On)
1410, 13jctird 530 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ∈ On ∧ suc 𝐵 ∈ On)))
15 tg1 21569 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
1615a1i 11 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵))
17 sucidg 6237 . . . . . 6 ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1811, 17syl 17 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1916, 18jctird 530 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 𝐵 𝐵 ∈ suc 𝐵)))
20 ontr2 6206 . . . 4 ((𝑥 ∈ On ∧ suc 𝐵 ∈ On) → ((𝑥 𝐵 𝐵 ∈ suc 𝐵) → 𝑥 ∈ suc 𝐵))
2114, 19, 20syl6c 70 . . 3 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ suc 𝐵))
22 elsuci 6225 . . . 4 (𝑥 ∈ suc 𝐵 → (𝑥 𝐵𝑥 = 𝐵))
23 eloni 6169 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
24 orduniss 6253 . . . . . . . 8 (Ord 𝐵 𝐵𝐵)
2523, 24syl 17 . . . . . . 7 (𝐵 ∈ On → 𝐵𝐵)
26 bastg 21571 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2725, 26sstrd 3925 . . . . . 6 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2827sseld 3914 . . . . 5 (𝐵 ∈ On → (𝑥 𝐵𝑥 ∈ (topGen‘𝐵)))
29 ssid 3937 . . . . . . 7 𝐵𝐵
30 eltg3i 21566 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵𝐵) → 𝐵 ∈ (topGen‘𝐵))
3129, 30mpan2 690 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ (topGen‘𝐵))
32 eleq1a 2885 . . . . . 6 ( 𝐵 ∈ (topGen‘𝐵) → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3331, 32syl 17 . . . . 5 (𝐵 ∈ On → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3428, 33jaod 856 . . . 4 (𝐵 ∈ On → ((𝑥 𝐵𝑥 = 𝐵) → 𝑥 ∈ (topGen‘𝐵)))
3522, 34syl5 34 . . 3 (𝐵 ∈ On → (𝑥 ∈ suc 𝐵𝑥 ∈ (topGen‘𝐵)))
3621, 35impbid 215 . 2 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ suc 𝐵))
3736eqrdv 2796 1 (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  topGenctg 16703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fv 6332  df-topgen 16709
This theorem is referenced by:  ontgsucval  33893
  Copyright terms: Public domain W3C validator