Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontgval Structured version   Visualization version   GIF version

Theorem ontgval 36419
Description: The topology generated from an ordinal number 𝐵 is suc 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.)
Assertion
Ref Expression
ontgval (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)

Proof of Theorem ontgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eltg4i 22847 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
2 inex1g 5274 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ V)
3 onss 7761 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
4 ssinss1 4209 . . . . . . . 8 (𝐵 ⊆ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
53, 4syl 17 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
6 ssonuni 7756 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) ∈ V → ((𝐵 ∩ 𝒫 𝑥) ⊆ On → (𝐵 ∩ 𝒫 𝑥) ∈ On))
72, 5, 6sylc 65 . . . . . 6 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ On)
8 eleq1 2816 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → (𝑥 ∈ On ↔ (𝐵 ∩ 𝒫 𝑥) ∈ On))
98biimprd 248 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ∈ On → 𝑥 ∈ On))
101, 7, 9syl2imc 41 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ On))
11 onuni 7764 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ On)
12 onsuc 7787 . . . . . 6 ( 𝐵 ∈ On → suc 𝐵 ∈ On)
1311, 12syl 17 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ On)
1410, 13jctird 526 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ∈ On ∧ suc 𝐵 ∈ On)))
15 tg1 22851 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
1615a1i 11 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵))
17 sucidg 6415 . . . . . 6 ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1811, 17syl 17 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1916, 18jctird 526 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 𝐵 𝐵 ∈ suc 𝐵)))
20 ontr2 6380 . . . 4 ((𝑥 ∈ On ∧ suc 𝐵 ∈ On) → ((𝑥 𝐵 𝐵 ∈ suc 𝐵) → 𝑥 ∈ suc 𝐵))
2114, 19, 20syl6c 70 . . 3 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ suc 𝐵))
22 elsuci 6401 . . . 4 (𝑥 ∈ suc 𝐵 → (𝑥 𝐵𝑥 = 𝐵))
23 eloni 6342 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
24 orduniss 6431 . . . . . . . 8 (Ord 𝐵 𝐵𝐵)
2523, 24syl 17 . . . . . . 7 (𝐵 ∈ On → 𝐵𝐵)
26 bastg 22853 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2725, 26sstrd 3957 . . . . . 6 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2827sseld 3945 . . . . 5 (𝐵 ∈ On → (𝑥 𝐵𝑥 ∈ (topGen‘𝐵)))
29 ssid 3969 . . . . . . 7 𝐵𝐵
30 eltg3i 22848 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵𝐵) → 𝐵 ∈ (topGen‘𝐵))
3129, 30mpan2 691 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ (topGen‘𝐵))
32 eleq1a 2823 . . . . . 6 ( 𝐵 ∈ (topGen‘𝐵) → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3331, 32syl 17 . . . . 5 (𝐵 ∈ On → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3428, 33jaod 859 . . . 4 (𝐵 ∈ On → ((𝑥 𝐵𝑥 = 𝐵) → 𝑥 ∈ (topGen‘𝐵)))
3522, 34syl5 34 . . 3 (𝐵 ∈ On → (𝑥 ∈ suc 𝐵𝑥 ∈ (topGen‘𝐵)))
3621, 35impbid 212 . 2 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ suc 𝐵))
3736eqrdv 2727 1 (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  Ord word 6331  Oncon0 6332  suc csuc 6334  cfv 6511  topGenctg 17400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fv 6519  df-topgen 17406
This theorem is referenced by:  ontgsucval  36420
  Copyright terms: Public domain W3C validator