Step | Hyp | Ref
| Expression |
1 | | eltg4i 22018 |
. . . . . 6
⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
2 | | inex1g 5238 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ V) |
3 | | onss 7611 |
. . . . . . . 8
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
4 | | ssinss1 4168 |
. . . . . . . 8
⊢ (𝐵 ⊆ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On) |
6 | | ssonuni 7607 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ V → ((𝐵 ∩ 𝒫 𝑥) ⊆ On → ∪ (𝐵
∩ 𝒫 𝑥) ∈
On)) |
7 | 2, 5, 6 | sylc 65 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ (𝐵
∩ 𝒫 𝑥) ∈
On) |
8 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑥 = ∪
(𝐵 ∩ 𝒫 𝑥) → (𝑥 ∈ On ↔ ∪ (𝐵
∩ 𝒫 𝑥) ∈
On)) |
9 | 8 | biimprd 247 |
. . . . . 6
⊢ (𝑥 = ∪
(𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵
∩ 𝒫 𝑥) ∈
On → 𝑥 ∈
On)) |
10 | 1, 7, 9 | syl2imc 41 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ On)) |
11 | | onuni 7615 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ On) |
12 | | suceloni 7635 |
. . . . . 6
⊢ (∪ 𝐵
∈ On → suc ∪ 𝐵 ∈ On) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → suc ∪ 𝐵
∈ On) |
14 | 10, 13 | jctird 526 |
. . . 4
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ∈ On ∧ suc ∪ 𝐵
∈ On))) |
15 | | tg1 22022 |
. . . . . 6
⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) |
16 | 15 | a1i 11 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵)) |
17 | | sucidg 6329 |
. . . . . 6
⊢ (∪ 𝐵
∈ On → ∪ 𝐵 ∈ suc ∪
𝐵) |
18 | 11, 17 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ suc ∪ 𝐵) |
19 | 16, 18 | jctird 526 |
. . . 4
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ⊆ ∪ 𝐵 ∧ ∪ 𝐵
∈ suc ∪ 𝐵))) |
20 | | ontr2 6298 |
. . . 4
⊢ ((𝑥 ∈ On ∧ suc ∪ 𝐵
∈ On) → ((𝑥
⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ suc ∪ 𝐵)
→ 𝑥 ∈ suc ∪ 𝐵)) |
21 | 14, 19, 20 | syl6c 70 |
. . 3
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ suc ∪
𝐵)) |
22 | | elsuci 6317 |
. . . 4
⊢ (𝑥 ∈ suc ∪ 𝐵
→ (𝑥 ∈ ∪ 𝐵
∨ 𝑥 = ∪ 𝐵)) |
23 | | eloni 6261 |
. . . . . . . 8
⊢ (𝐵 ∈ On → Ord 𝐵) |
24 | | orduniss 6345 |
. . . . . . . 8
⊢ (Ord
𝐵 → ∪ 𝐵
⊆ 𝐵) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ On → ∪ 𝐵
⊆ 𝐵) |
26 | | bastg 22024 |
. . . . . . 7
⊢ (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵)) |
27 | 25, 26 | sstrd 3927 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
⊆ (topGen‘𝐵)) |
28 | 27 | sseld 3916 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
29 | | ssid 3939 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝐵 |
30 | | eltg3i 22019 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐵 ⊆ 𝐵) → ∪ 𝐵 ∈ (topGen‘𝐵)) |
31 | 29, 30 | mpan2 687 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ (topGen‘𝐵)) |
32 | | eleq1a 2834 |
. . . . . 6
⊢ (∪ 𝐵
∈ (topGen‘𝐵)
→ (𝑥 = ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
33 | 31, 32 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 = ∪
𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
34 | 28, 33 | jaod 855 |
. . . 4
⊢ (𝐵 ∈ On → ((𝑥 ∈ ∪ 𝐵
∨ 𝑥 = ∪ 𝐵)
→ 𝑥 ∈
(topGen‘𝐵))) |
35 | 22, 34 | syl5 34 |
. . 3
⊢ (𝐵 ∈ On → (𝑥 ∈ suc ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
36 | 21, 35 | impbid 211 |
. 2
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ suc ∪
𝐵)) |
37 | 36 | eqrdv 2736 |
1
⊢ (𝐵 ∈ On →
(topGen‘𝐵) = suc
∪ 𝐵) |