| Step | Hyp | Ref
| Expression |
| 1 | | eltg4i 22903 |
. . . . . 6
⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 2 | | inex1g 5294 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ V) |
| 3 | | onss 7784 |
. . . . . . . 8
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 4 | | ssinss1 4226 |
. . . . . . . 8
⊢ (𝐵 ⊆ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On) |
| 6 | | ssonuni 7779 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ V → ((𝐵 ∩ 𝒫 𝑥) ⊆ On → ∪ (𝐵
∩ 𝒫 𝑥) ∈
On)) |
| 7 | 2, 5, 6 | sylc 65 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ (𝐵
∩ 𝒫 𝑥) ∈
On) |
| 8 | | eleq1 2823 |
. . . . . . 7
⊢ (𝑥 = ∪
(𝐵 ∩ 𝒫 𝑥) → (𝑥 ∈ On ↔ ∪ (𝐵
∩ 𝒫 𝑥) ∈
On)) |
| 9 | 8 | biimprd 248 |
. . . . . 6
⊢ (𝑥 = ∪
(𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵
∩ 𝒫 𝑥) ∈
On → 𝑥 ∈
On)) |
| 10 | 1, 7, 9 | syl2imc 41 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ On)) |
| 11 | | onuni 7787 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ On) |
| 12 | | onsuc 7810 |
. . . . . 6
⊢ (∪ 𝐵
∈ On → suc ∪ 𝐵 ∈ On) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → suc ∪ 𝐵
∈ On) |
| 14 | 10, 13 | jctird 526 |
. . . 4
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ∈ On ∧ suc ∪ 𝐵
∈ On))) |
| 15 | | tg1 22907 |
. . . . . 6
⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) |
| 16 | 15 | a1i 11 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵)) |
| 17 | | sucidg 6440 |
. . . . . 6
⊢ (∪ 𝐵
∈ On → ∪ 𝐵 ∈ suc ∪
𝐵) |
| 18 | 11, 17 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ suc ∪ 𝐵) |
| 19 | 16, 18 | jctird 526 |
. . . 4
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ⊆ ∪ 𝐵 ∧ ∪ 𝐵
∈ suc ∪ 𝐵))) |
| 20 | | ontr2 6405 |
. . . 4
⊢ ((𝑥 ∈ On ∧ suc ∪ 𝐵
∈ On) → ((𝑥
⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ suc ∪ 𝐵)
→ 𝑥 ∈ suc ∪ 𝐵)) |
| 21 | 14, 19, 20 | syl6c 70 |
. . 3
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ suc ∪
𝐵)) |
| 22 | | elsuci 6426 |
. . . 4
⊢ (𝑥 ∈ suc ∪ 𝐵
→ (𝑥 ∈ ∪ 𝐵
∨ 𝑥 = ∪ 𝐵)) |
| 23 | | eloni 6367 |
. . . . . . . 8
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 24 | | orduniss 6456 |
. . . . . . . 8
⊢ (Ord
𝐵 → ∪ 𝐵
⊆ 𝐵) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ On → ∪ 𝐵
⊆ 𝐵) |
| 26 | | bastg 22909 |
. . . . . . 7
⊢ (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵)) |
| 27 | 25, 26 | sstrd 3974 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
⊆ (topGen‘𝐵)) |
| 28 | 27 | sseld 3962 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 ∈ ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
| 29 | | ssid 3986 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝐵 |
| 30 | | eltg3i 22904 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐵 ⊆ 𝐵) → ∪ 𝐵 ∈ (topGen‘𝐵)) |
| 31 | 29, 30 | mpan2 691 |
. . . . . 6
⊢ (𝐵 ∈ On → ∪ 𝐵
∈ (topGen‘𝐵)) |
| 32 | | eleq1a 2830 |
. . . . . 6
⊢ (∪ 𝐵
∈ (topGen‘𝐵)
→ (𝑥 = ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
| 33 | 31, 32 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → (𝑥 = ∪
𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
| 34 | 28, 33 | jaod 859 |
. . . 4
⊢ (𝐵 ∈ On → ((𝑥 ∈ ∪ 𝐵
∨ 𝑥 = ∪ 𝐵)
→ 𝑥 ∈
(topGen‘𝐵))) |
| 35 | 22, 34 | syl5 34 |
. . 3
⊢ (𝐵 ∈ On → (𝑥 ∈ suc ∪ 𝐵
→ 𝑥 ∈
(topGen‘𝐵))) |
| 36 | 21, 35 | impbid 212 |
. 2
⊢ (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ suc ∪
𝐵)) |
| 37 | 36 | eqrdv 2734 |
1
⊢ (𝐵 ∈ On →
(topGen‘𝐵) = suc
∪ 𝐵) |