Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontgval Structured version   Visualization version   GIF version

Theorem ontgval 36547
Description: The topology generated from an ordinal number 𝐵 is suc 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.)
Assertion
Ref Expression
ontgval (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)

Proof of Theorem ontgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eltg4i 22895 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
2 inex1g 5261 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ V)
3 onss 7727 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
4 ssinss1 4195 . . . . . . . 8 (𝐵 ⊆ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
53, 4syl 17 . . . . . . 7 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ⊆ On)
6 ssonuni 7722 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) ∈ V → ((𝐵 ∩ 𝒫 𝑥) ⊆ On → (𝐵 ∩ 𝒫 𝑥) ∈ On))
72, 5, 6sylc 65 . . . . . 6 (𝐵 ∈ On → (𝐵 ∩ 𝒫 𝑥) ∈ On)
8 eleq1 2821 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → (𝑥 ∈ On ↔ (𝐵 ∩ 𝒫 𝑥) ∈ On))
98biimprd 248 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ∈ On → 𝑥 ∈ On))
101, 7, 9syl2imc 41 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ On))
11 onuni 7730 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ On)
12 onsuc 7752 . . . . . 6 ( 𝐵 ∈ On → suc 𝐵 ∈ On)
1311, 12syl 17 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ On)
1410, 13jctird 526 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 ∈ On ∧ suc 𝐵 ∈ On)))
15 tg1 22899 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
1615a1i 11 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵))
17 sucidg 6397 . . . . . 6 ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1811, 17syl 17 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
1916, 18jctird 526 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → (𝑥 𝐵 𝐵 ∈ suc 𝐵)))
20 ontr2 6362 . . . 4 ((𝑥 ∈ On ∧ suc 𝐵 ∈ On) → ((𝑥 𝐵 𝐵 ∈ suc 𝐵) → 𝑥 ∈ suc 𝐵))
2114, 19, 20syl6c 70 . . 3 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ suc 𝐵))
22 elsuci 6383 . . . 4 (𝑥 ∈ suc 𝐵 → (𝑥 𝐵𝑥 = 𝐵))
23 eloni 6324 . . . . . . . 8 (𝐵 ∈ On → Ord 𝐵)
24 orduniss 6413 . . . . . . . 8 (Ord 𝐵 𝐵𝐵)
2523, 24syl 17 . . . . . . 7 (𝐵 ∈ On → 𝐵𝐵)
26 bastg 22901 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2725, 26sstrd 3941 . . . . . 6 (𝐵 ∈ On → 𝐵 ⊆ (topGen‘𝐵))
2827sseld 3929 . . . . 5 (𝐵 ∈ On → (𝑥 𝐵𝑥 ∈ (topGen‘𝐵)))
29 ssid 3953 . . . . . . 7 𝐵𝐵
30 eltg3i 22896 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵𝐵) → 𝐵 ∈ (topGen‘𝐵))
3129, 30mpan2 691 . . . . . 6 (𝐵 ∈ On → 𝐵 ∈ (topGen‘𝐵))
32 eleq1a 2828 . . . . . 6 ( 𝐵 ∈ (topGen‘𝐵) → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3331, 32syl 17 . . . . 5 (𝐵 ∈ On → (𝑥 = 𝐵𝑥 ∈ (topGen‘𝐵)))
3428, 33jaod 859 . . . 4 (𝐵 ∈ On → ((𝑥 𝐵𝑥 = 𝐵) → 𝑥 ∈ (topGen‘𝐵)))
3522, 34syl5 34 . . 3 (𝐵 ∈ On → (𝑥 ∈ suc 𝐵𝑥 ∈ (topGen‘𝐵)))
3621, 35impbid 212 . 2 (𝐵 ∈ On → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ suc 𝐵))
3736eqrdv 2731 1 (𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4551   cuni 4860  Ord word 6313  Oncon0 6314  suc csuc 6316  cfv 6489  topGenctg 17348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fv 6497  df-topgen 17354
This theorem is referenced by:  ontgsucval  36548
  Copyright terms: Public domain W3C validator