![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupneqmaxlim0 | Structured version Visualization version GIF version |
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupneqmaxlim0 | ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4915 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴) | |
2 | ssorduni 7761 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | orduniss 6458 | . . . . 5 ⊢ (Ord ∪ 𝐴 → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
5 | 4 | biantrud 533 | . . 3 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
6 | eqss 3996 | . . 3 ⊢ (∪ 𝐴 = ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴)) | |
7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
8 | 1, 7 | imbitrid 243 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3947 ∪ cuni 4907 Ord word 6360 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |