| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupneqmaxlim0 | Structured version Visualization version GIF version | ||
| Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupneqmaxlim0 | ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss 4875 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴) | |
| 2 | ssorduni 7735 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | orduniss 6419 | . . . . 5 ⊢ (Ord ∪ 𝐴 → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
| 5 | 4 | biantrud 531 | . . 3 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
| 6 | eqss 3959 | . . 3 ⊢ (∪ 𝐴 = ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴)) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
| 8 | 1, 7 | imbitrid 244 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∪ cuni 4867 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |