![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupneqmaxlim0 | Structured version Visualization version GIF version |
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupneqmaxlim0 | ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4916 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴) | |
2 | ssorduni 7780 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | orduniss 6466 | . . . . 5 ⊢ (Ord ∪ 𝐴 → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
5 | 4 | biantrud 530 | . . 3 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
6 | eqss 3993 | . . 3 ⊢ (∪ 𝐴 = ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴)) | |
7 | 5, 6 | bitr4di 288 | . 2 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
8 | 1, 7 | imbitrid 243 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ⊆ wss 3945 ∪ cuni 4908 Ord word 6368 Oncon0 6369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6372 df-on 6373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |