| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupneqmaxlim0 | Structured version Visualization version GIF version | ||
| Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupneqmaxlim0 | ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss 4914 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴) | |
| 2 | ssorduni 7800 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | orduniss 6480 | . . . . 5 ⊢ (Ord ∪ 𝐴 → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
| 5 | 4 | biantrud 531 | . . 3 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
| 6 | eqss 3998 | . . 3 ⊢ (∪ 𝐴 = ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴)) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
| 8 | 1, 7 | imbitrid 244 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3950 ∪ cuni 4906 Ord word 6382 Oncon0 6383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |