Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupneqmaxlim0 Structured version   Visualization version   GIF version

Theorem onsupneqmaxlim0 42717
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupneqmaxlim0 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))

Proof of Theorem onsupneqmaxlim0
StepHypRef Expression
1 uniss 4916 . 2 (𝐴 𝐴 𝐴 𝐴)
2 ssorduni 7780 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduniss 6466 . . . . 5 (Ord 𝐴 𝐴 𝐴)
42, 3syl 17 . . . 4 (𝐴 ⊆ On → 𝐴 𝐴)
54biantrud 530 . . 3 (𝐴 ⊆ On → ( 𝐴 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴)))
6 eqss 3993 . . 3 ( 𝐴 = 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴))
75, 6bitr4di 288 . 2 (𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴))
81, 7imbitrid 243 1 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wss 3945   cuni 4908  Ord word 6368  Oncon0 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6372  df-on 6373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator