![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupneqmaxlim0 | Structured version Visualization version GIF version |
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupneqmaxlim0 | ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4911 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴) | |
2 | ssorduni 7775 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | orduniss 6460 | . . . . 5 ⊢ (Ord ∪ 𝐴 → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
5 | 4 | biantrud 531 | . . 3 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
6 | eqss 3993 | . . 3 ⊢ (∪ 𝐴 = ∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴)) | |
7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
8 | 1, 7 | imbitrid 243 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ⊆ wss 3944 ∪ cuni 4903 Ord word 6362 Oncon0 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-on 6367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |