Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupneqmaxlim0 Structured version   Visualization version   GIF version

Theorem onsupneqmaxlim0 43213
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupneqmaxlim0 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))

Proof of Theorem onsupneqmaxlim0
StepHypRef Expression
1 uniss 4879 . 2 (𝐴 𝐴 𝐴 𝐴)
2 ssorduni 7755 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduniss 6431 . . . . 5 (Ord 𝐴 𝐴 𝐴)
42, 3syl 17 . . . 4 (𝐴 ⊆ On → 𝐴 𝐴)
54biantrud 531 . . 3 (𝐴 ⊆ On → ( 𝐴 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴)))
6 eqss 3962 . . 3 ( 𝐴 = 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴))
75, 6bitr4di 289 . 2 (𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴))
81, 7imbitrid 244 1 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3914   cuni 4871  Ord word 6331  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator