Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupneqmaxlim0 Structured version   Visualization version   GIF version

Theorem onsupneqmaxlim0 43185
Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupneqmaxlim0 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))

Proof of Theorem onsupneqmaxlim0
StepHypRef Expression
1 uniss 4939 . 2 (𝐴 𝐴 𝐴 𝐴)
2 ssorduni 7814 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduniss 6492 . . . . 5 (Ord 𝐴 𝐴 𝐴)
42, 3syl 17 . . . 4 (𝐴 ⊆ On → 𝐴 𝐴)
54biantrud 531 . . 3 (𝐴 ⊆ On → ( 𝐴 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴)))
6 eqss 4024 . . 3 ( 𝐴 = 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴))
75, 6bitr4di 289 . 2 (𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴))
81, 7imbitrid 244 1 (𝐴 ⊆ On → (𝐴 𝐴 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976   cuni 4931  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator