Step | Hyp | Ref
| Expression |
1 | | rexnal 3100 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
2 | | ralnex 3072 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
3 | 2 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
4 | | ssunib 41954 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ∪ 𝐴
↔ ∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
5 | 4 | notbii 319 |
. . . . . . . . 9
⊢ (¬
𝐴 ⊆ ∪ 𝐴
↔ ¬ ∀𝑥
∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
6 | 1, 3, 5 | 3bitr4ri 303 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ ∪ 𝐴
↔ ∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦) |
7 | | simpll 765 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) → 𝐴 ⊆ On) |
8 | 7 | sselda 3981 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
9 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → 𝐴 ⊆
On) |
10 | 9 | sselda 3981 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) → 𝑥 ∈ On) |
11 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
12 | | ontri1 6395 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
13 | 8, 11, 12 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
14 | 13 | ralbidva 3175 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) ∧ 𝑥 ∈
𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦)) |
15 | 14 | rexbidva 3176 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (∃𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦)) |
16 | 6, 15 | bitr4id 289 |
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (¬ 𝐴
⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
17 | | unielid 41953 |
. . . . . . . . 9
⊢ (∪ 𝐴
∈ 𝐴 ↔
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
19 | 18 | biimprd 247 |
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (∃𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
20 | 16, 19 | sylbid 239 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (¬ 𝐴
⊆ ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
21 | 20 | con1d 145 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (¬ ∪ 𝐴 ∈ 𝐴 → 𝐴 ⊆ ∪ 𝐴)) |
22 | | uniss 4915 |
. . . . 5
⊢ (𝐴 ⊆ ∪ 𝐴
→ ∪ 𝐴 ⊆ ∪ ∪ 𝐴) |
23 | 21, 22 | syl6 35 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ⊆ ∪ ∪ 𝐴)) |
24 | | ssorduni 7762 |
. . . . . . . 8
⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
25 | | orduniss 6458 |
. . . . . . . 8
⊢ (Ord
∪ 𝐴 → ∪ ∪ 𝐴
⊆ ∪ 𝐴) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝐴 ⊆ On → ∪ ∪ 𝐴 ⊆ ∪ 𝐴) |
27 | 26 | biantrud 532 |
. . . . . 6
⊢ (𝐴 ⊆ On → (∪ 𝐴
⊆ ∪ ∪ 𝐴 ↔ (∪ 𝐴
⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ⊆ ∪ 𝐴))) |
28 | | eqss 3996 |
. . . . . 6
⊢ (∪ 𝐴 =
∪ ∪ 𝐴 ↔ (∪ 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴
⊆ ∪ 𝐴)) |
29 | 27, 28 | bitr4di 288 |
. . . . 5
⊢ (𝐴 ⊆ On → (∪ 𝐴
⊆ ∪ ∪ 𝐴 ↔ ∪ 𝐴 =
∪ ∪ 𝐴)) |
30 | 29 | adantr 481 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (∪ 𝐴 ⊆ ∪ ∪ 𝐴
↔ ∪ 𝐴 = ∪ ∪ 𝐴)) |
31 | 23, 30 | sylibd 238 |
. . 3
⊢ ((𝐴 ⊆ On ∧ ∪ 𝐴
∈ On) → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪
∪ 𝐴)) |
32 | 31 | ex 413 |
. 2
⊢ (𝐴 ⊆ On → (∪ 𝐴
∈ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪
∪ 𝐴))) |
33 | | unon 7815 |
. . . . 5
⊢ ∪ On = On |
34 | 33 | a1i 11 |
. . . 4
⊢ (∪ 𝐴 =
On → ∪ On = On) |
35 | | unieq 4918 |
. . . 4
⊢ (∪ 𝐴 =
On → ∪ ∪ 𝐴 = ∪
On) |
36 | | id 22 |
. . . 4
⊢ (∪ 𝐴 =
On → ∪ 𝐴 = On) |
37 | 34, 35, 36 | 3eqtr4rd 2783 |
. . 3
⊢ (∪ 𝐴 =
On → ∪ 𝐴 = ∪ ∪ 𝐴) |
38 | 37 | a1i13 27 |
. 2
⊢ (𝐴 ⊆ On → (∪ 𝐴 =
On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪
∪ 𝐴))) |
39 | | ordeleqon 7765 |
. . 3
⊢ (Ord
∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 =
On)) |
40 | 24, 39 | sylib 217 |
. 2
⊢ (𝐴 ⊆ On → (∪ 𝐴
∈ On ∨ ∪ 𝐴 = On)) |
41 | 32, 38, 40 | mpjaod 858 |
1
⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴
∈ 𝐴 → ∪ 𝐴 =
∪ ∪ 𝐴)) |