MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Visualization version   GIF version

Theorem orduniorsuc 7669
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 6358 . . . . . 6 (Ord 𝐴 𝐴𝐴)
2 orduni 7631 . . . . . . . 8 (Ord 𝐴 → Ord 𝐴)
3 ordelssne 6291 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐴) → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
42, 3mpancom 685 . . . . . . 7 (Ord 𝐴 → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
54biimprd 247 . . . . . 6 (Ord 𝐴 → (( 𝐴𝐴 𝐴𝐴) → 𝐴𝐴))
61, 5mpand 692 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 𝐴𝐴))
7 ordsucss 7657 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
86, 7syld 47 . . . 4 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
9 ordsucuni 7668 . . . 4 (Ord 𝐴𝐴 ⊆ suc 𝐴)
108, 9jctild 526 . . 3 (Ord 𝐴 → ( 𝐴𝐴 → (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴)))
11 df-ne 2946 . . . 4 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
12 necom 2999 . . . 4 (𝐴 𝐴 𝐴𝐴)
1311, 12bitr3i 276 . . 3 𝐴 = 𝐴 𝐴𝐴)
14 eqss 3941 . . 3 (𝐴 = suc 𝐴 ↔ (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴))
1510, 13, 143imtr4g 296 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
1615orrd 860 1 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  wss 3892   cuni 4845  Ord word 6263  suc csuc 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6267  df-on 6268  df-suc 6270
This theorem is referenced by:  onuniorsuci  7678  oeeulem  8415  cantnfp1lem2  9413  cantnflem1  9423  cnfcom2lem  9435  dfac12lem1  9898  dfac12lem2  9899  ttukeylem3  10266  ttukeylem5  10268  ttukeylem6  10269  ordtoplem  34618  ordcmp  34630  onsucuni3  35532  aomclem5  40878  onsetreclem3  46379
  Copyright terms: Public domain W3C validator