Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orduniorsuc | Structured version Visualization version GIF version |
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
Ref | Expression |
---|---|
orduniorsuc | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduniss 6358 | . . . . . 6 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
2 | orduni 7631 | . . . . . . . 8 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | |
3 | ordelssne 6291 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐴 ∧ Ord 𝐴) → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) | |
4 | 2, 3 | mpancom 685 | . . . . . . 7 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) |
5 | 4 | biimprd 247 | . . . . . 6 ⊢ (Ord 𝐴 → ((∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴) → ∪ 𝐴 ∈ 𝐴)) |
6 | 1, 5 | mpand 692 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
7 | ordsucss 7657 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) | |
8 | 6, 7 | syld 47 | . . . 4 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) |
9 | ordsucuni 7668 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 8, 9 | jctild 526 | . . 3 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴))) |
11 | df-ne 2946 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
12 | necom 2999 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) | |
13 | 11, 12 | bitr3i 276 | . . 3 ⊢ (¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) |
14 | eqss 3941 | . . 3 ⊢ (𝐴 = suc ∪ 𝐴 ↔ (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴)) | |
15 | 10, 13, 14 | 3imtr4g 296 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
16 | 15 | orrd 860 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ⊆ wss 3892 ∪ cuni 4845 Ord word 6263 suc csuc 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6267 df-on 6268 df-suc 6270 |
This theorem is referenced by: onuniorsuci 7678 oeeulem 8415 cantnfp1lem2 9413 cantnflem1 9423 cnfcom2lem 9435 dfac12lem1 9898 dfac12lem2 9899 ttukeylem3 10266 ttukeylem5 10268 ttukeylem6 10269 ordtoplem 34618 ordcmp 34630 onsucuni3 35532 aomclem5 40878 onsetreclem3 46379 |
Copyright terms: Public domain | W3C validator |