MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Visualization version   GIF version

Theorem orduniorsuc 7850
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 6481 . . . . . 6 (Ord 𝐴 𝐴𝐴)
2 orduni 7809 . . . . . . . 8 (Ord 𝐴 → Ord 𝐴)
3 ordelssne 6411 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐴) → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
42, 3mpancom 688 . . . . . . 7 (Ord 𝐴 → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
54biimprd 248 . . . . . 6 (Ord 𝐴 → (( 𝐴𝐴 𝐴𝐴) → 𝐴𝐴))
61, 5mpand 695 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 𝐴𝐴))
7 ordsucss 7838 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
86, 7syld 47 . . . 4 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
9 ordsucuni 7849 . . . 4 (Ord 𝐴𝐴 ⊆ suc 𝐴)
108, 9jctild 525 . . 3 (Ord 𝐴 → ( 𝐴𝐴 → (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴)))
11 df-ne 2941 . . . 4 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
12 necom 2994 . . . 4 (𝐴 𝐴 𝐴𝐴)
1311, 12bitr3i 277 . . 3 𝐴 = 𝐴 𝐴𝐴)
14 eqss 3999 . . 3 (𝐴 = suc 𝐴 ↔ (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴))
1510, 13, 143imtr4g 296 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
1615orrd 864 1 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wss 3951   cuni 4907  Ord word 6383  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-suc 6390
This theorem is referenced by:  onuniorsuc  7857  oeeulem  8639  cantnfp1lem2  9719  cantnflem1  9729  cnfcom2lem  9741  dfac12lem1  10184  dfac12lem2  10185  ttukeylem3  10551  ttukeylem5  10553  ttukeylem6  10554  ordtoplem  36436  ordcmp  36448  onsucuni3  37368  aomclem5  43070  omlimcl2  43254  onov0suclim  43287  dflim5  43342  onsetreclem3  49226
  Copyright terms: Public domain W3C validator