![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orduniorsuc | Structured version Visualization version GIF version |
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
Ref | Expression |
---|---|
orduniorsuc | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduniss 6036 | . . . . . 6 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
2 | orduni 7229 | . . . . . . . 8 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | |
3 | ordelssne 5969 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐴 ∧ Ord 𝐴) → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) | |
4 | 2, 3 | mpancom 680 | . . . . . . 7 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) |
5 | 4 | biimprd 240 | . . . . . 6 ⊢ (Ord 𝐴 → ((∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴) → ∪ 𝐴 ∈ 𝐴)) |
6 | 1, 5 | mpand 687 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
7 | ordsucss 7253 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) | |
8 | 6, 7 | syld 47 | . . . 4 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) |
9 | ordsucuni 7264 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 8, 9 | jctild 522 | . . 3 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴))) |
11 | df-ne 2973 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
12 | necom 3025 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) | |
13 | 11, 12 | bitr3i 269 | . . 3 ⊢ (¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) |
14 | eqss 3814 | . . 3 ⊢ (𝐴 = suc ∪ 𝐴 ↔ (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴)) | |
15 | 10, 13, 14 | 3imtr4g 288 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
16 | 15 | orrd 890 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ⊆ wss 3770 ∪ cuni 4629 Ord word 5941 suc csuc 5944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-tr 4947 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-ord 5945 df-on 5946 df-suc 5948 |
This theorem is referenced by: onuniorsuci 7274 oeeulem 7922 cantnfp1lem2 8827 cantnflem1 8837 cnfcom2lem 8849 dfac12lem1 9254 dfac12lem2 9255 ttukeylem3 9622 ttukeylem5 9624 ttukeylem6 9625 ordtoplem 32941 ordcmp 32953 onsucuni3 33712 aomclem5 38408 onsetreclem3 43247 |
Copyright terms: Public domain | W3C validator |