MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Visualization version   GIF version

Theorem orduniorsuc 7785
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 6419 . . . . . 6 (Ord 𝐴 𝐴𝐴)
2 orduni 7745 . . . . . . . 8 (Ord 𝐴 → Ord 𝐴)
3 ordelssne 6347 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐴) → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
42, 3mpancom 688 . . . . . . 7 (Ord 𝐴 → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
54biimprd 248 . . . . . 6 (Ord 𝐴 → (( 𝐴𝐴 𝐴𝐴) → 𝐴𝐴))
61, 5mpand 695 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 𝐴𝐴))
7 ordsucss 7773 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
86, 7syld 47 . . . 4 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
9 ordsucuni 7784 . . . 4 (Ord 𝐴𝐴 ⊆ suc 𝐴)
108, 9jctild 525 . . 3 (Ord 𝐴 → ( 𝐴𝐴 → (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴)))
11 df-ne 2926 . . . 4 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
12 necom 2978 . . . 4 (𝐴 𝐴 𝐴𝐴)
1311, 12bitr3i 277 . . 3 𝐴 = 𝐴 𝐴𝐴)
14 eqss 3959 . . 3 (𝐴 = suc 𝐴 ↔ (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴))
1510, 13, 143imtr4g 296 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
1615orrd 863 1 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wss 3911   cuni 4867  Ord word 6319  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326
This theorem is referenced by:  onuniorsuc  7792  oeeulem  8542  cantnfp1lem2  9608  cantnflem1  9618  cnfcom2lem  9630  dfac12lem1  10073  dfac12lem2  10074  ttukeylem3  10440  ttukeylem5  10442  ttukeylem6  10443  ordtoplem  36416  ordcmp  36428  onsucuni3  37348  aomclem5  43040  omlimcl2  43224  onov0suclim  43256  dflim5  43311  onsetreclem3  49689
  Copyright terms: Public domain W3C validator