![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orduniorsuc | Structured version Visualization version GIF version |
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
Ref | Expression |
---|---|
orduniorsuc | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduniss 6492 | . . . . . 6 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
2 | orduni 7825 | . . . . . . . 8 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | |
3 | ordelssne 6422 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐴 ∧ Ord 𝐴) → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) | |
4 | 2, 3 | mpancom 687 | . . . . . . 7 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) |
5 | 4 | biimprd 248 | . . . . . 6 ⊢ (Ord 𝐴 → ((∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴) → ∪ 𝐴 ∈ 𝐴)) |
6 | 1, 5 | mpand 694 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
7 | ordsucss 7854 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) | |
8 | 6, 7 | syld 47 | . . . 4 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) |
9 | ordsucuni 7865 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 8, 9 | jctild 525 | . . 3 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴))) |
11 | df-ne 2947 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
12 | necom 3000 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) | |
13 | 11, 12 | bitr3i 277 | . . 3 ⊢ (¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) |
14 | eqss 4024 | . . 3 ⊢ (𝐴 = suc ∪ 𝐴 ↔ (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴)) | |
15 | 10, 13, 14 | 3imtr4g 296 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
16 | 15 | orrd 862 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ∪ cuni 4931 Ord word 6394 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: onuniorsuc 7873 oeeulem 8657 cantnfp1lem2 9748 cantnflem1 9758 cnfcom2lem 9770 dfac12lem1 10213 dfac12lem2 10214 ttukeylem3 10580 ttukeylem5 10582 ttukeylem6 10583 ordtoplem 36401 ordcmp 36413 onsucuni3 37333 aomclem5 43015 omlimcl2 43203 onov0suclim 43236 dflim5 43291 onsetreclem3 48799 |
Copyright terms: Public domain | W3C validator |