MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Visualization version   GIF version

Theorem orduniorsuc 7766
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 6411 . . . . . 6 (Ord 𝐴 𝐴𝐴)
2 orduni 7728 . . . . . . . 8 (Ord 𝐴 → Ord 𝐴)
3 ordelssne 6339 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐴) → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
42, 3mpancom 688 . . . . . . 7 (Ord 𝐴 → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴)))
54biimprd 248 . . . . . 6 (Ord 𝐴 → (( 𝐴𝐴 𝐴𝐴) → 𝐴𝐴))
61, 5mpand 695 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 𝐴𝐴))
7 ordsucss 7754 . . . . 5 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
86, 7syld 47 . . . 4 (Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴))
9 ordsucuni 7765 . . . 4 (Ord 𝐴𝐴 ⊆ suc 𝐴)
108, 9jctild 525 . . 3 (Ord 𝐴 → ( 𝐴𝐴 → (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴)))
11 df-ne 2929 . . . 4 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
12 necom 2981 . . . 4 (𝐴 𝐴 𝐴𝐴)
1311, 12bitr3i 277 . . 3 𝐴 = 𝐴 𝐴𝐴)
14 eqss 3945 . . 3 (𝐴 = suc 𝐴 ↔ (𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴))
1510, 13, 143imtr4g 296 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
1615orrd 863 1 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wss 3897   cuni 4858  Ord word 6311  suc csuc 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6315  df-on 6316  df-suc 6318
This theorem is referenced by:  onuniorsuc  7773  oeeulem  8522  cantnfp1lem2  9575  cantnflem1  9585  cnfcom2lem  9597  dfac12lem1  10041  dfac12lem2  10042  ttukeylem3  10408  ttukeylem5  10410  ttukeylem6  10411  ordtoplem  36486  ordcmp  36498  onsucuni3  37418  aomclem5  43156  omlimcl2  43340  onov0suclim  43372  dflim5  43427  onsetreclem3  49813
  Copyright terms: Public domain W3C validator