| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orduniorsuc | Structured version Visualization version GIF version | ||
| Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
| Ref | Expression |
|---|---|
| orduniorsuc | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduniss 6411 | . . . . . 6 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
| 2 | orduni 7728 | . . . . . . . 8 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | |
| 3 | ordelssne 6339 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐴 ∧ Ord 𝐴) → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) | |
| 4 | 2, 3 | mpancom 688 | . . . . . . 7 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ (∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴))) |
| 5 | 4 | biimprd 248 | . . . . . 6 ⊢ (Ord 𝐴 → ((∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴) → ∪ 𝐴 ∈ 𝐴)) |
| 6 | 1, 5 | mpand 695 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
| 7 | ordsucss 7754 | . . . . 5 ⊢ (Ord 𝐴 → (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) | |
| 8 | 6, 7 | syld 47 | . . . 4 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴)) |
| 9 | ordsucuni 7765 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | |
| 10 | 8, 9 | jctild 525 | . . 3 ⊢ (Ord 𝐴 → (∪ 𝐴 ≠ 𝐴 → (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴))) |
| 11 | df-ne 2929 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
| 12 | necom 2981 | . . . 4 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) | |
| 13 | 11, 12 | bitr3i 277 | . . 3 ⊢ (¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴) |
| 14 | eqss 3945 | . . 3 ⊢ (𝐴 = suc ∪ 𝐴 ↔ (𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴)) | |
| 15 | 10, 13, 14 | 3imtr4g 296 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
| 16 | 15 | orrd 863 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∪ cuni 4858 Ord word 6311 suc csuc 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6315 df-on 6316 df-suc 6318 |
| This theorem is referenced by: onuniorsuc 7773 oeeulem 8522 cantnfp1lem2 9575 cantnflem1 9585 cnfcom2lem 9597 dfac12lem1 10041 dfac12lem2 10042 ttukeylem3 10408 ttukeylem5 10410 ttukeylem6 10411 ordtoplem 36486 ordcmp 36498 onsucuni3 37418 aomclem5 43156 omlimcl2 43340 onov0suclim 43372 dflim5 43427 onsetreclem3 49813 |
| Copyright terms: Public domain | W3C validator |