| Metamath
Proof Explorer Theorem List (p. 65 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ordnbtwn 6401 | There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
| Theorem | onnbtwn 6402 | There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 9-Jun-1994.) |
| ⊢ (𝐴 ∈ On → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
| Theorem | sucssel 6403 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | orddif 6404 | Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
| ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | ||
| Theorem | orduniss 6405 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | ordtri2or 6406 | A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
| Theorem | ordtri2or2 6407 | A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
| Theorem | ordtri2or3 6408 | A consequence of total ordering for ordinal classes. Similar to ordtri2or2 6407. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | ||
| Theorem | ordelinel 6409 | The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) | ||
| Theorem | ordssun 6410 | Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) | ||
| Theorem | ordequn 6411 | The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
| Theorem | ordun 6412 | The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∪ 𝐵)) | ||
| Theorem | onunel 6413 | The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) | ||
| Theorem | ordunisssuc 6414 | A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | suc11 6415 | The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | onun2 6416 | The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | ||
| Theorem | ontr 6417 | An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ On → Tr 𝐴) | ||
| Theorem | onunisuc 6418 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6427. (Revised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | ||
| Theorem | onordi 6419 | An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Ord 𝐴 | ||
| Theorem | onirri 6420 | An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ¬ 𝐴 ∈ 𝐴 | ||
| Theorem | oneli 6421 | A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) | ||
| Theorem | onelssi 6422 | A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) | ||
| Theorem | onssneli 6423 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
| Theorem | onssnel2i 6424 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ⊆ 𝐴 → ¬ 𝐴 ∈ 𝐵) | ||
| Theorem | onelini 6425 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
| Theorem | oneluni 6426 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
| Theorem | onunisuci 6427 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
| Theorem | onsseli 6428 | Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | onun2i 6429 | The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ On | ||
| Theorem | unizlim 6430 | An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | ||
| Theorem | on0eqel 6431 | An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
| ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | ||
| Theorem | snsn0non 6432 | The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7800). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6433. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ¬ {{∅}} ∈ On | ||
| Theorem | onxpdisj 6433 | Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6432. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (On ∩ (V × V)) = ∅ | ||
| Theorem | onnev 6434 | The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
| ⊢ On ≠ V | ||
| Syntax | cio 6435 | Extend class notation with Russell's definition description binder (inverted iota). |
| class (℩𝑥𝜑) | ||
| Theorem | iotajust 6436* | Soundness justification theorem for df-iota 6437. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
| Definition | df-iota 6437* |
Define Russell's definition description binder, which can be read as
"the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains
𝑥 as a free variable. Our definition
is meaningful only when there
is exactly one 𝑥 such that 𝜑 is true (see iotaval 6455);
otherwise, it evaluates to the empty set (see iotanul 6461). Russell used
the inverted iota symbol ℩ to represent
the binder.
Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7319 (or iotacl 6467 for unbounded iota), as demonstrated in the proof of supub 9343. This can be easier than applying riotasbc 7321 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
| Theorem | dfiota2 6438* | Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
| Theorem | nfiota1 6439 | Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥(℩𝑥𝜑) | ||
| Theorem | nfiotadw 6440* | Deduction version of nfiotaw 6441. Version of nfiotad 6442 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
| Theorem | nfiotaw 6441* | Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6443 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
| Theorem | nfiotad 6442 | Deduction version of nfiota 6443. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfiotadw 6440 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
| Theorem | nfiota 6443 | Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfiotaw 6441 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
| Theorem | cbviotaw 6444* | Change bound variables in a description binder. Version of cbviota 6446 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 1-Aug-2011.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
| Theorem | cbviotavw 6445* | Change bound variables in a description binder. Version of cbviotav 6447 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
| Theorem | cbviota 6446 | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbviotaw 6444 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
| Theorem | cbviotav 6447* | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbviotavw 6445 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
| Theorem | sb8iota 6448 | Variable substitution in description binder. Compare sb8eu 2595. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 18-Mar-2013.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | iotaeq 6449 | Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | ||
| Theorem | iotabi 6450 | Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | ||
| Theorem | uniabio 6451* | Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) | ||
| Theorem | iotaval2 6452* | Version of iotaval 6455 using df-iota 6437 instead of dfiota2 6438. (Contributed by SN, 6-Nov-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | ||
| Theorem | iotauni2 6453* | Version of iotauni 6458 using df-iota 6437 instead of dfiota2 6438. (Contributed by SN, 6-Nov-2024.) |
| ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
| Theorem | iotanul2 6454* | Version of iotanul 6461 using df-iota 6437 instead of dfiota2 6438. (Contributed by SN, 6-Nov-2024.) |
| ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | ||
| Theorem | iotaval 6455* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 23-Nov-2024.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
| Theorem | iotassuni 6456 | The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 6-Nov-2024.) |
| ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
| Theorem | iotaex 6457 | Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 6-Nov-2024.) |
| ⊢ (℩𝑥𝜑) ∈ V | ||
| Theorem | iotauni 6458 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
| Theorem | iotaint 6459 | Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | iota1 6460 | Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | ||
| Theorem | iotanul 6461 | Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | ||
| Theorem | iota4 6462 | Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | ||
| Theorem | iota4an 6463 | Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) | ||
| Theorem | iota5 6464* | A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
| ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
| Theorem | iotabidv 6465* | Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
| Theorem | iotabii 6466 | Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
| Theorem | iotacl 6467 |
Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6437). If you have a bounded iota-based definition, riotacl2 7319 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
| Theorem | iota2df 6468 | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | iota2d 6469* | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | iota2 6470* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
| Theorem | iotan0 6471* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
| Theorem | sniota 6472 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
| Theorem | dfiota4 6473 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
| ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
| Theorem | csbiota 6474* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
| Syntax | wfun 6475 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
| wff Fun 𝐴 | ||
| Syntax | wfn 6476 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
| wff 𝐴 Fn 𝐵 | ||
| Syntax | wf 6477 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
| wff 𝐹:𝐴⟶𝐵 | ||
| Syntax | wf1 6478 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1→𝐵 | ||
| Syntax | wfo 6479 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–onto→𝐵 | ||
| Syntax | wf1o 6480 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1-onto→𝐵 | ||
| Syntax | cfv 6481 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴", or "𝐹 of 𝐴". |
| class (𝐹‘𝐴) | ||
| Syntax | wiso 6482 | Extend the definition of a wff to include the isomorphism property. Read: "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". |
| wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
| Definition | df-fun 6483 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15974). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5172 with the maps-to notation (see df-mpt 5173 and df-mpo 7351). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6484), a function with a given domain and codomain (df-f 6485), a one-to-one function (df-f1 6486), an onto function (df-fo 6487), or a one-to-one onto function (df-f1o 6488). For alternate definitions, see dffun2 6491, dffun3 6493, dffun4 6494, dffun5 6495, dffun6 6492, dffun7 6508, dffun8 6509, and dffun9 6510. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
| Definition | df-fn 6484 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6653, dffn3 6663, dffn4 6741, and dffn5 6880. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
| Definition | df-f 6485 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7032, dff3 7033, and dff4 7034. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
| Definition | df-f1 6486 |
Define a one-to-one function. For equivalent definitions see dff12 6718
and dff13 7188. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 17991. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
| Definition | df-fo 6487 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6739, dffo3 7035, dffo4 7036, and dffo5 7037.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17992. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
| Definition | df-f1o 6488 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 6768, dff1o3 6769, dff1o4 6771, and dff1o5 6772. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow).
A one-to-one onto function is also called a "bijection" or a "bijective function", 𝐹:𝐴–1-1-onto→𝐵 can be read as "𝐹 is a bijection between 𝐴 and 𝐵". Bijections are precisely the isomorphisms in the category SetCat of sets and set functions, see setciso 17995. Therefore, two sets are called "isomorphic" if there is a bijection between them. According to isof1oidb 7258, two sets are isomorphic iff there is an isomorphism Isom regarding the identity relation. In this case, the two sets are also "equinumerous", see bren 8879. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
| Definition | df-fv 6489* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16056 after we define cosine in df-cos 15974). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5173 and df-mpo 7351), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9 (ex-fv 30418). Note that df-ov 7349 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6854 and fvprc 6814). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6917, dffv3 6818, fv2 6817, and fv3 6840 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6909 and funfv2 6910. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6876. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. Original version is now Theorem dffv4 6819. (Revised by Scott Fenton, 6-Oct-2017.) |
| ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
| Definition | df-isom 6490* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
| Theorem | dffun2 6491* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2144, ax-12 2180. (Revised by SN, 19-Dec-2024.) Avoid ax-11 2160. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
| Theorem | dffun6 6492* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2144, ax-12 2180. (Revised by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
| Theorem | dffun3 6493* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof shortened by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
| Theorem | dffun4 6494* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
| Theorem | dffun5 6495* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | ||
| Theorem | dffun6f 6496* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
| Theorem | funmo 6497* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | funrel 6498 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 → Rel 𝐴) | ||
| Theorem | 0nelfun 6499 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
| ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
| Theorem | funss 6500 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |