![]() |
Metamath
Proof Explorer Theorem List (p. 65 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-suc 6401 | Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8587). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6471), so that the successor of any ordinal class is still an ordinal class (ordsuc 7849), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | ||
Theorem | ordeq 6402 | Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | ||
Theorem | elong 6403 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) | ||
Theorem | elon 6404 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ On ↔ Ord 𝐴) | ||
Theorem | eloni 6405 | An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ On → Ord 𝐴) | ||
Theorem | elon2 6406 | An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | ||
Theorem | limeq 6407 | Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) | ||
Theorem | ordwe 6408 | Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
⊢ (Ord 𝐴 → E We 𝐴) | ||
Theorem | ordtr 6409 | An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
⊢ (Ord 𝐴 → Tr 𝐴) | ||
Theorem | ordfr 6410 | Membership is well-founded on an ordinal class. In other words, an ordinal class is well-founded. (Contributed by NM, 22-Apr-1994.) |
⊢ (Ord 𝐴 → E Fr 𝐴) | ||
Theorem | ordelss 6411 | An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | ||
Theorem | trssord 6412 | A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) | ||
Theorem | ordirr 6413 | No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | nordeq 6414 | A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | ||
Theorem | ordn2lp 6415 | An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
Theorem | tz7.5 6416* | A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | ||
Theorem | ordelord 6417 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 23-Apr-1994.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
Theorem | tron 6418 | The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
⊢ Tr On | ||
Theorem | ordelon 6419 | An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
Theorem | onelon 6420 | An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
Theorem | tz7.7 6421 | A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.) |
⊢ ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵 ∈ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | ordelssne 6422 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
Theorem | ordelpss 6423 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
Theorem | ordsseleq 6424 | For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | ordin 6425 | The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | ||
Theorem | onin 6426 | The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) | ||
Theorem | ordtri3or 6427 | A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | ordtri1 6428 | A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
Theorem | ontri1 6429 | A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
Theorem | ordtri2 6430 | A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
Theorem | ordtri3 6431 | A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
Theorem | ordtri4 6432 | A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) | ||
Theorem | orddisj 6433 | An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | ||
Theorem | onfr 6434 | The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7812 (through epweon 7810) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.) |
⊢ E Fr On | ||
Theorem | onelpss 6435 | Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
Theorem | onsseleq 6436 | Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | onelss 6437 | An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | ordtr1 6438 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
Theorem | ordtr2 6439 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
Theorem | ordtr3 6440 | Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | ||
Theorem | ontr1 6441 | Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
Theorem | ontr2 6442 | Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
Theorem | onelssex 6443* | Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) | ||
Theorem | ordunidif 6444 | The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) | ||
Theorem | ordintdif 6445 | If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) | ||
Theorem | onintss 6446* | If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) | ||
Theorem | oneqmini 6447* | A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | ||
Theorem | ord0 6448 | The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
⊢ Ord ∅ | ||
Theorem | 0elon 6449 | The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
⊢ ∅ ∈ On | ||
Theorem | ord0eln0 6450 | A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
Theorem | on0eln0 6451 | An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
Theorem | dflim2 6452 | An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.) |
⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
Theorem | inton 6453 | The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
⊢ ∩ On = ∅ | ||
Theorem | nlim0 6454 | The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ¬ Lim ∅ | ||
Theorem | limord 6455 | A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
⊢ (Lim 𝐴 → Ord 𝐴) | ||
Theorem | limuni 6456 | A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | ||
Theorem | limuni2 6457 | The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
⊢ (Lim 𝐴 → Lim ∪ 𝐴) | ||
Theorem | 0ellim 6458 | A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | ||
Theorem | limelon 6459 | A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | ||
Theorem | onn0 6460 | The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
⊢ On ≠ ∅ | ||
Theorem | suceq 6461 | Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | ||
Theorem | elsuci 6462 | Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.) |
⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | elsucg 6463 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | elsuc2g 6464 | Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | elsuc 6465 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | elsuc2 6466 | Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | ||
Theorem | nfsuc 6467 | Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 suc 𝐴 | ||
Theorem | elelsuc 6468 | Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | ||
Theorem | sucel 6469* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
Theorem | suc0 6470 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
⊢ suc ∅ = {∅} | ||
Theorem | sucprc 6471 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
Theorem | unisucs 6472 | The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6474. (Revised by BJ, 28-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | ||
Theorem | unisucg 6473 | A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6474. (Revised by BJ, 28-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
Theorem | unisuc 6474 | A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
Theorem | sssucid 6475 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 ⊆ suc 𝐴 | ||
Theorem | sucidg 6476 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
Theorem | sucid 6477 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
Theorem | nsuceq0 6478 | No successor is empty. (Contributed by NM, 3-Apr-1995.) |
⊢ suc 𝐴 ≠ ∅ | ||
Theorem | eqelsuc 6479 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
Theorem | iunsuc 6480* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
Theorem | suctr 6481 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
Theorem | trsuc 6482 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
Theorem | trsucss 6483 | A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.) |
⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | ordsssuc 6484 | An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | onsssuc 6485 | A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | ordsssuc2 6486 | An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | onmindif 6487 | When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) | ||
Theorem | ordnbtwn 6488 | There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
Theorem | onnbtwn 6489 | There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 9-Jun-1994.) |
⊢ (𝐴 ∈ On → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
Theorem | sucssel 6490 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
Theorem | orddif 6491 | Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | ||
Theorem | orduniss 6492 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
Theorem | ordtri2or 6493 | A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | ordtri2or2 6494 | A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | ordtri2or3 6495 | A consequence of total ordering for ordinal classes. Similar to ordtri2or2 6494. (Contributed by David Moews, 1-May-2017.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | ||
Theorem | ordelinel 6496 | The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) | ||
Theorem | ordssun 6497 | Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) | ||
Theorem | ordequn 6498 | The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
Theorem | ordun 6499 | The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∪ 𝐵)) | ||
Theorem | onunel 6500 | The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |