Home | Metamath
Proof Explorer Theorem List (p. 65 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfiota 6401 | Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker nfiotaw 6399 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
Theorem | cbviotaw 6402* | Change bound variables in a description binder. Version of cbviota 6405 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotavw 6403* | Change bound variables in a description binder. Version of cbviotav 6406 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotavwOLD 6404* | Obsolete version of cbviotavw 6403 as of 30-Sep-2024. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviota 6405 | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbviotaw 6402 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotav 6406* | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbviotavw 6403 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | sb8iota 6407 | Variable substitution in description binder. Compare sb8eu 2601. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 18-Mar-2013.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | iotaeq 6408 | Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | ||
Theorem | iotabi 6409 | Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | ||
Theorem | uniabio 6410* | Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) | ||
Theorem | iotaval 6411* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotauni 6412 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotaint 6413 | Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | iota1 6414 | Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | ||
Theorem | iotanul 6415 | Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | ||
Theorem | iotassuni 6416 | The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaex 6417 | Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iota4 6418 | Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | ||
Theorem | iota4an 6419 | Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) | ||
Theorem | iota5 6420* | A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | iotabidv 6421* | Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
Theorem | iotabii 6422 | Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
Theorem | iotacl 6423 |
Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6395). If you have a bounded iota-based definition, riotacl2 7258 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | iota2df 6424 | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2d 6425* | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2 6426* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
Theorem | iotan0 6427* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
Theorem | sniota 6428 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
Theorem | dfiota4 6429 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
Theorem | csbiota 6430* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
Syntax | wfun 6431 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
wff Fun 𝐴 | ||
Syntax | wfn 6432 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
wff 𝐴 Fn 𝐵 | ||
Syntax | wf 6433 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
wff 𝐹:𝐴⟶𝐵 | ||
Syntax | wf1 6434 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1→𝐵 | ||
Syntax | wfo 6435 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–onto→𝐵 | ||
Syntax | wf1o 6436 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1-onto→𝐵 | ||
Syntax | cfv 6437 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴", or "𝐹 of 𝐴". |
class (𝐹‘𝐴) | ||
Syntax | wiso 6438 | Extend the definition of a wff to include the isomorphism property. Read: "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". |
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
Definition | df-fun 6439 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15789). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5158 with the maps-to notation (see df-mpt 5159 and df-mpo 7289). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6440), a function with a given domain and codomain (df-f 6441), a one-to-one function (df-f1 6442), an onto function (df-fo 6443), or a one-to-one onto function (df-f1o 6444). For alternate definitions, see dffun2 6447, dffun3 6450, dffun4 6452, dffun5 6453, dffun6 6449, dffun7 6468, dffun8 6469, and dffun9 6470. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
Definition | df-fn 6440 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6611, dffn3 6622, dffn4 6703, and dffn5 6837. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
Definition | df-f 6441 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 6984, dff3 6985, and dff4 6986. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
Definition | df-f1 6442 |
Define a one-to-one function. For equivalent definitions see dff12 6678
and dff13 7137. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 17811. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
Definition | df-fo 6443 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6701, dffo3 6987, dffo4 6988, and dffo5 6989.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17812. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
Definition | df-f1o 6444 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 6730, dff1o3 6731, dff1o4 6733, and dff1o5 6734. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow).
A one-to-one onto function is also called a "bijection" or a "bijective function", 𝐹:𝐴–1-1-onto→𝐵 can be read as "𝐹 is a bijection between 𝐴 and 𝐵". Bijections are precisely the isomorphisms in the category SetCat of sets and set functions, see setciso 17815. Therefore, two sets are called "isomorphic" if there is a bijection between them. According to isof1oidb 7204, two sets are isomorphic iff there is an isomorphism Isom regarding the identity relation. In this case, the two sets are also "equinumerous", see bren 8752. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
Definition | df-fv 6445* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 15868 after we define cosine in df-cos 15789). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5159 and df-mpo 7289), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9 (ex-fv 28816). Note that df-ov 7287 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6813 and fvprc 6775). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6872, dffv3 6779, fv2 6778, and fv3 6801 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6864 and funfv2 6865. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6834. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. Original version is now Theorem dffv4 6780. (Revised by Scott Fenton, 6-Oct-2017.) |
⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
Definition | df-isom 6446* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
Theorem | dffun2 6447* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2138, ax-12 2172. (Revised by SN, 19-Dec-2024.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun2OLD 6448* | Obsolete version of dffun2 6447 as of 11-Dec-2024. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun6 6449* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2138, ax-12 2172. (Revised by SN, 19-Dec-2024.) |
⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
Theorem | dffun3 6450* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof shortened by SN, 19-Dec-2024.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Theorem | dffun3OLD 6451* | Obsolete version of dffun3 6450 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Theorem | dffun4 6452* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
Theorem | dffun5 6453* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | ||
Theorem | dffun6f 6454* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun6OLD 6455* | Obsolete version of dffun6 6449 as of 19-Dec-2024. (Contributed by NM, 9-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
Theorem | funmo 6456* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.) |
⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funmoOLD 6457* | Obsolete version of funmo 6456 as of 19-Dec-2024. (Contributed by NM, 24-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funrel 6458 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 → Rel 𝐴) | ||
Theorem | 0nelfun 6459 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
Theorem | funss 6460 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
Theorem | funeq 6461 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | funeqi 6462 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Fun 𝐴 ↔ Fun 𝐵) | ||
Theorem | funeqd 6463 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | nffun 6464 | Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥Fun 𝐹 | ||
Theorem | sbcfung 6465 | Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | funeu 6466* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
Theorem | funeu2 6467* | There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) | ||
Theorem | dffun7 6468* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 6469 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun8 6469* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 6468. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun9 6470* | Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) | ||
Theorem | funfn 6471 | A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | ||
Theorem | funfnd 6472 | A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → Fun 𝐴) ⇒ ⊢ (𝜑 → 𝐴 Fn dom 𝐴) | ||
Theorem | funi 6473 | The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6569. (Contributed by NM, 30-Apr-1998.) |
⊢ Fun I | ||
Theorem | nfunv 6474 | The universal class is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
⊢ ¬ Fun V | ||
Theorem | funopg 6475 | A Kuratowski ordered pair of sets is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6492, as relsnopg 5715 is to relop 5762. (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ Fun 〈𝐴, 𝐵〉) → 𝐴 = 𝐵) | ||
Theorem | funopab 6476* | A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) | ||
Theorem | funopabeq 6477* | A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | ||
Theorem | funopab4 6478* | A class of ordered pairs of values in the form used by df-mpt 5159 is a function. (Contributed by NM, 17-Feb-2013.) |
⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} | ||
Theorem | funmpt 6479 | A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | funmpt2 6480 | Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ Fun 𝐹 | ||
Theorem | funco 6481 | The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
Theorem | funresfunco 6482 | Composition of two functions, generalization of funco 6481. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
Theorem | funres 6483 | A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | ||
Theorem | funresd 6484 | A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) | ||
Theorem | funssres 6485 | The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | ||
Theorem | fun2ssres 6486 | Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) | ||
Theorem | funun 6487 | The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹 ∪ 𝐺)) | ||
Theorem | fununmo 6488* | If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | ||
Theorem | fununfun 6489 | If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) | ||
Theorem | fundif 6490 | A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) | ||
Theorem | funcnvsn 6491 | The converse singleton of an ordered pair is a function. This is equivalent to funsn 6494 via cnvsn 6134, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
⊢ Fun ◡{〈𝐴, 𝐵〉} | ||
Theorem | funsng 6492 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | ||
Theorem | fnsng 6493 | Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) | ||
Theorem | funsn 6494 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ Fun {〈𝐴, 𝐵〉} | ||
Theorem | funprg 6495 | A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
Theorem | funtpg 6496 | A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → Fun {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}) | ||
Theorem | funpr 6497 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
Theorem | funtp 6498 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) | ||
Theorem | fnsn 6499 | Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} | ||
Theorem | fnprg 6500 | Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |