![]() |
Metamath
Proof Explorer Theorem List (p. 65 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | eqelsuc 6401 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
Theorem | iunsuc 6402* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
Theorem | suctr 6403 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
Theorem | trsuc 6404 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
Theorem | trsucss 6405 | A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.) |
⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | ordsssuc 6406 | An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | onsssuc 6407 | A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | ordsssuc2 6408 | An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | ||
Theorem | onmindif 6409 | When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) | ||
Theorem | ordnbtwn 6410 | There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
Theorem | onnbtwn 6411 | There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 9-Jun-1994.) |
⊢ (𝐴 ∈ On → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | ||
Theorem | sucssel 6412 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
Theorem | orddif 6413 | Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | ||
Theorem | orduniss 6414 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
Theorem | ordtri2or 6415 | A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | ordtri2or2 6416 | A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | ordtri2or3 6417 | A consequence of total ordering for ordinal classes. Similar to ordtri2or2 6416. (Contributed by David Moews, 1-May-2017.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | ||
Theorem | ordelinel 6418 | The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) | ||
Theorem | ordssun 6419 | Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) | ||
Theorem | ordequn 6420 | The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
Theorem | ordun 6421 | The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∪ 𝐵)) | ||
Theorem | onunel 6422 | The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) | ||
Theorem | ordunisssuc 6423 | A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) | ||
Theorem | suc11 6424 | The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onun2 6425 | The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | ||
Theorem | ontr 6426 | An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.) |
⊢ (𝐴 ∈ On → Tr 𝐴) | ||
Theorem | onunisuc 6427 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6437. (Revised by BJ, 28-Dec-2024.) |
⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | ||
Theorem | onordi 6428 | An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ Ord 𝐴 | ||
Theorem | ontrciOLD 6429 | Obsolete version of ontr 6426 as of 28-Dec-2024. (Contributed by NM, 11-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ On ⇒ ⊢ Tr 𝐴 | ||
Theorem | onirri 6430 | An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ ¬ 𝐴 ∈ 𝐴 | ||
Theorem | oneli 6431 | A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) | ||
Theorem | onelssi 6432 | A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) | ||
Theorem | onssneli 6433 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
Theorem | onssnel2i 6434 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ⊆ 𝐴 → ¬ 𝐴 ∈ 𝐵) | ||
Theorem | onelini 6435 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
Theorem | oneluni 6436 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
Theorem | onunisuci 6437 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
Theorem | onsseli 6438 | Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | onun2i 6439 | The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ On | ||
Theorem | unizlim 6440 | An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | ||
Theorem | on0eqel 6441 | An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | ||
Theorem | snsn0non 6442 | The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7806). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6443. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ¬ {{∅}} ∈ On | ||
Theorem | onxpdisj 6443 | Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6442. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (On ∩ (V × V)) = ∅ | ||
Theorem | onnev 6444 | The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
⊢ On ≠ V | ||
Theorem | onnevOLD 6445 | Obsolete version of onnev 6444 as of 27-May-2024. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ On ≠ V | ||
Syntax | cio 6446 | Extend class notation with Russell's definition description binder (inverted iota). |
class (℩𝑥𝜑) | ||
Theorem | iotajust 6447* | Soundness justification theorem for df-iota 6448. (Contributed by Andrew Salmon, 29-Jun-2011.) |
⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
Definition | df-iota 6448* |
Define Russell's definition description binder, which can be read as
"the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains
𝑥 as a free variable. Our definition
is meaningful only when there
is exactly one 𝑥 such that 𝜑 is true (see iotaval 6467);
otherwise, it evaluates to the empty set (see iotanul 6474). Russell used
the inverted iota symbol ℩ to represent
the binder.
Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7330 (or iotacl 6482 for unbounded iota), as demonstrated in the proof of supub 9395. This can be easier than applying riotasbc 7332 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
Theorem | dfiota2 6449* | Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
Theorem | nfiota1 6450 | Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥(℩𝑥𝜑) | ||
Theorem | nfiotadw 6451* | Deduction version of nfiotaw 6452. Version of nfiotad 6453 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2370. (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
Theorem | nfiotaw 6452* | Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6454 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2370. (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
Theorem | nfiotad 6453 | Deduction version of nfiota 6454. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfiotadw 6451 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
Theorem | nfiota 6454 | Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfiotaw 6452 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
Theorem | cbviotaw 6455* | Change bound variables in a description binder. Version of cbviota 6458 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 1-Aug-2011.) Avoid ax-13 2370. (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotavw 6456* | Change bound variables in a description binder. Version of cbviotav 6459 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotavwOLD 6457* | Obsolete version of cbviotavw 6456 as of 30-Sep-2024. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviota 6458 | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbviotaw 6455 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotav 6459* | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbviotavw 6456 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | sb8iota 6460 | Variable substitution in description binder. Compare sb8eu 2598. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 18-Mar-2013.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | iotaeq 6461 | Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | ||
Theorem | iotabi 6462 | Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | ||
Theorem | uniabio 6463* | Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) | ||
Theorem | iotaval2 6464* | Version of iotaval 6467 using df-iota 6448 instead of dfiota2 6449. (Contributed by SN, 6-Nov-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotauni2 6465* | Version of iotauni 6471 using df-iota 6448 instead of dfiota2 6449. (Contributed by SN, 6-Nov-2024.) |
⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotanul2 6466* | Version of iotanul 6474 using df-iota 6448 instead of dfiota2 6449. (Contributed by SN, 6-Nov-2024.) |
⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | ||
Theorem | iotaval 6467* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 23-Nov-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotassuni 6468 | The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaex 6469 | Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iotavalOLD 6470* | Obsolete version of iotaval 6467 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotauni 6471 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotaint 6472 | Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | iota1 6473 | Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | ||
Theorem | iotanul 6474 | Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | ||
Theorem | iotassuniOLD 6475 | Obsolete version of iotassuni 6468 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaexOLD 6476 | Obsolete version of iotaex 6469 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iota4 6477 | Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | ||
Theorem | iota4an 6478 | Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) | ||
Theorem | iota5 6479* | A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | iotabidv 6480* | Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
Theorem | iotabii 6481 | Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
Theorem | iotacl 6482 |
Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6448). If you have a bounded iota-based definition, riotacl2 7330 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | iota2df 6483 | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2d 6484* | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2 6485* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
Theorem | iotan0 6486* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
Theorem | sniota 6487 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
Theorem | dfiota4 6488 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
Theorem | csbiota 6489* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
Syntax | wfun 6490 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
wff Fun 𝐴 | ||
Syntax | wfn 6491 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
wff 𝐴 Fn 𝐵 | ||
Syntax | wf 6492 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
wff 𝐹:𝐴⟶𝐵 | ||
Syntax | wf1 6493 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1→𝐵 | ||
Syntax | wfo 6494 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–onto→𝐵 | ||
Syntax | wf1o 6495 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1-onto→𝐵 | ||
Syntax | cfv 6496 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴", or "𝐹 of 𝐴". |
class (𝐹‘𝐴) | ||
Syntax | wiso 6497 | Extend the definition of a wff to include the isomorphism property. Read: "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". |
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
Definition | df-fun 6498 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 15953). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5188 with the maps-to notation (see df-mpt 5189 and df-mpo 7362). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6499), a function with a given domain and codomain (df-f 6500), a one-to-one function (df-f1 6501), an onto function (df-fo 6502), or a one-to-one onto function (df-f1o 6503). For alternate definitions, see dffun2 6506, dffun3 6510, dffun4 6512, dffun5 6513, dffun6 6509, dffun7 6528, dffun8 6529, and dffun9 6530. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
Definition | df-fn 6499 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6670, dffn3 6681, dffn4 6762, and dffn5 6901. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
Definition | df-f 6500 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7049, dff3 7050, and dff4 7051. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |