|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ordtri2or | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| ordtri2or | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtri1 6416 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | 
| 3 | 2 | biimprd 248 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ∈ 𝐵 → 𝐵 ⊆ 𝐴)) | 
| 4 | 3 | orrd 863 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2107 ⊆ wss 3950 Ord word 6382 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 | 
| This theorem is referenced by: ordtri2or2 6482 ordunisuc2 7866 oaass 8600 alephdom 10122 iscard3 10134 noetasuplem4 27782 noetainflem4 27786 sltonold 28284 cantnfresb 43342 omabs2 43350 tfsconcat0b 43364 oaun3lem1 43392 | 
| Copyright terms: Public domain | W3C validator |