MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or Structured version   Visualization version   GIF version

Theorem ordtri2or 6386
Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordtri2or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))

Proof of Theorem ordtri2or
StepHypRef Expression
1 ordtri1 6322 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
21ancoms 459 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
32biimprd 247 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴𝐵𝐵𝐴))
43orrd 860 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wcel 2105  wss 3897  Ord word 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-tr 5205  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-ord 6292
This theorem is referenced by:  ordtri2or2  6387  ordunisuc2  7737  oaass  8442  alephdom  9917  iscard3  9929  noetasuplem4  34013  noetainflem4  34017
  Copyright terms: Public domain W3C validator