| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version | ||
| Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orddisj 6351 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 2 | disj3 4403 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
| 3 | df-suc 6319 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | difeq1i 4071 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
| 5 | difun2 4430 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
| 6 | 4, 5 | eqtri 2756 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
| 7 | 6 | eqeq2i 2746 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
| 8 | 2, 7 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 9 | 1, 8 | sylib 218 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 {csn 4577 Ord word 6312 suc csuc 6315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-fr 5574 df-we 5576 df-ord 6316 df-suc 6319 |
| This theorem is referenced by: dif1enlem 9078 pssnn 9087 phplem2 9123 cantnfresb 43444 |
| Copyright terms: Public domain | W3C validator |