![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version |
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orddisj 6407 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
2 | disj3 4454 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
3 | df-suc 6375 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | difeq1i 4116 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 4481 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2756 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
7 | 6 | eqeq2i 2741 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
8 | 2, 7 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | 1, 8 | sylib 217 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4323 {csn 4629 Ord word 6368 suc csuc 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-eprel 5582 df-fr 5633 df-we 5635 df-ord 6372 df-suc 6375 |
This theorem is referenced by: dif1enlem 9181 dif1enlemOLD 9182 pssnn 9193 phplem2 9233 phplem3OLD 9244 phplem4OLD 9245 pssnnOLD 9290 cantnfresb 42753 |
Copyright terms: Public domain | W3C validator |