Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version |
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orddisj 6304 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
2 | disj3 4387 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
3 | df-suc 6272 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | difeq1i 4053 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 4414 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2766 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
7 | 6 | eqeq2i 2751 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
8 | 2, 7 | bitr4i 277 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | 1, 8 | sylib 217 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 Ord word 6265 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-we 5546 df-ord 6269 df-suc 6272 |
This theorem is referenced by: dif1enlem 8943 pssnn 8951 phplem2 8991 phplem3OLD 9002 phplem4OLD 9003 pssnnOLD 9040 |
Copyright terms: Public domain | W3C validator |