![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version |
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orddisj 6401 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
2 | disj3 4452 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
3 | df-suc 6369 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | difeq1i 4117 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 4479 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2758 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
7 | 6 | eqeq2i 2743 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
8 | 2, 7 | bitr4i 277 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | 1, 8 | sylib 217 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 Ord word 6362 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-fr 5630 df-we 5632 df-ord 6366 df-suc 6369 |
This theorem is referenced by: dif1enlem 9158 dif1enlemOLD 9159 pssnn 9170 phplem2 9210 phplem3OLD 9221 phplem4OLD 9222 pssnnOLD 9267 cantnfresb 42376 |
Copyright terms: Public domain | W3C validator |