| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version | ||
| Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orddisj 6395 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
| 2 | disj3 4434 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
| 3 | df-suc 6363 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | difeq1i 4102 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
| 5 | difun2 4461 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
| 6 | 4, 5 | eqtri 2759 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
| 7 | 6 | eqeq2i 2749 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
| 8 | 2, 7 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 9 | 1, 8 | sylib 218 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 Ord word 6356 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-eprel 5558 df-fr 5611 df-we 5613 df-ord 6360 df-suc 6363 |
| This theorem is referenced by: dif1enlem 9175 dif1enlemOLD 9176 pssnn 9187 phplem2 9224 phplem3OLD 9235 cantnfresb 43315 |
| Copyright terms: Public domain | W3C validator |