MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orddif Structured version   Visualization version   GIF version

Theorem orddif 6460
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 6401 . 2 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
2 disj3 4434 . . 3 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴}))
3 df-suc 6369 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
43difeq1i 4102 . . . . 5 (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴})
5 difun2 4461 . . . . 5 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴})
64, 5eqtri 2757 . . . 4 (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴})
76eqeq2i 2747 . . 3 (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴}))
82, 7bitr4i 278 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴}))
91, 8sylib 218 1 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3928  cun 3929  cin 3930  c0 4313  {csn 4606  Ord word 6362  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-eprel 5564  df-fr 5617  df-we 5619  df-ord 6366  df-suc 6369
This theorem is referenced by:  dif1enlem  9178  dif1enlemOLD  9179  pssnn  9190  phplem2  9227  phplem3OLD  9238  phplem4OLD  9239  cantnfresb  43299
  Copyright terms: Public domain W3C validator