MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orddif Structured version   Visualization version   GIF version

Theorem orddif 6359
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 6304 . 2 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
2 disj3 4387 . . 3 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴}))
3 df-suc 6272 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
43difeq1i 4053 . . . . 5 (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴})
5 difun2 4414 . . . . 5 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴})
64, 5eqtri 2766 . . . 4 (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴})
76eqeq2i 2751 . . 3 (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴}))
82, 7bitr4i 277 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴}))
91, 8sylib 217 1 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3884  cun 3885  cin 3886  c0 4256  {csn 4561  Ord word 6265  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544  df-we 5546  df-ord 6269  df-suc 6272
This theorem is referenced by:  dif1enlem  8943  pssnn  8951  phplem2  8991  phplem3OLD  9002  phplem4OLD  9003  pssnnOLD  9040
  Copyright terms: Public domain W3C validator