MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10805
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9845 . . 3 Tr (𝑅1𝐴)
21a1i 11 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → Tr (𝑅1𝐴))
3 limelon 6459 . . . . . 6 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ On)
4 r1fnon 9836 . . . . . . 7 𝑅1 Fn On
54fndmi 6683 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2855 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1)
7 onssr1 9900 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
86, 7syl 17 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ⊆ (𝑅1𝐴))
9 0ellim 6458 . . . . 5 (Lim 𝐴 → ∅ ∈ 𝐴)
109adantl 481 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ 𝐴)
118, 10sseldd 4009 . . 3 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ (𝑅1𝐴))
1211ne0d 4365 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ≠ ∅)
13 rankuni 9932 . . . . . 6 (rank‘ 𝑥) = (rank‘𝑥)
14 rankon 9864 . . . . . . . . 9 (rank‘𝑥) ∈ On
15 eloni 6405 . . . . . . . . 9 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
16 orduniss 6492 . . . . . . . . 9 (Ord (rank‘𝑥) → (rank‘𝑥) ⊆ (rank‘𝑥))
1714, 15, 16mp2b 10 . . . . . . . 8 (rank‘𝑥) ⊆ (rank‘𝑥)
1817a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ⊆ (rank‘𝑥))
19 rankr1ai 9867 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → (rank‘𝑥) ∈ 𝐴)
2019adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
21 onuni 7824 . . . . . . . . 9 ((rank‘𝑥) ∈ On → (rank‘𝑥) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 (rank‘𝑥) ∈ On
233adantr 480 . . . . . . . 8 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ On)
24 ontr2 6442 . . . . . . . 8 (( (rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2522, 23, 24sylancr 586 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2618, 20, 25mp2and 698 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
2713, 26eqeltrid 2848 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘ 𝑥) ∈ 𝐴)
28 r1elwf 9865 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → 𝑥 (𝑅1 “ On))
2928adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
30 uniwf 9888 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
3129, 30sylib 218 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
326adantr 480 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9871 . . . . . 6 (( 𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3431, 32, 33syl2anc 583 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3527, 34mpbird 257 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ∈ (𝑅1𝐴))
36 r1pwcl 9916 . . . . . 6 (Lim 𝐴 → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3736adantl 481 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3837biimpa 476 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
3928ad2antlr 726 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
40 r1elwf 9865 . . . . . . . . 9 (𝑦 ∈ (𝑅1𝐴) → 𝑦 (𝑅1 “ On))
4140adantl 481 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑦 (𝑅1 “ On))
42 rankprb 9920 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
4339, 41, 42syl2anc 583 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
44 limord 6455 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
4544ad3antlr 730 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → Ord 𝐴)
4620adantr 480 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
47 rankr1ai 9867 . . . . . . . . . 10 (𝑦 ∈ (𝑅1𝐴) → (rank‘𝑦) ∈ 𝐴)
4847adantl 481 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑦) ∈ 𝐴)
49 ordunel 7863 . . . . . . . . 9 ((Ord 𝐴 ∧ (rank‘𝑥) ∈ 𝐴 ∧ (rank‘𝑦) ∈ 𝐴) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1371 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
51 limsuc 7886 . . . . . . . . 9 (Lim 𝐴 → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5251ad3antlr 730 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5350, 52mpbid 232 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5443, 53eqeltrd 2844 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) ∈ 𝐴)
55 prwf 9880 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5639, 41, 55syl2anc 583 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5732adantr 480 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9871 . . . . . . 7 (({𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 583 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6054, 59mpbird 257 . . . . 5 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1𝐴))
6160ralrimiva 3152 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))
6235, 38, 613jca 1128 . . 3 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
6362ralrimiva 3152 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
64 fvex 6933 . . 3 (𝑅1𝐴) ∈ V
65 iswun 10773 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))))
6664, 65ax-mp 5 . 2 ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))))
672, 12, 63, 66syl3anbrc 1343 1 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {cpr 4650   cuni 4931  Tr wtr 5283  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  𝑅1cr1 9831  rankcrnk 9832  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834  df-wun 10771
This theorem is referenced by:  r1wunlim  10806  wunex3  10810
  Copyright terms: Public domain W3C validator