MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10730
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9770 . . 3 Tr (𝑅1β€˜π΄)
21a1i 11 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ Tr (𝑅1β€˜π΄))
3 limelon 6428 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 ∈ On)
4 r1fnon 9761 . . . . . . 7 𝑅1 Fn On
54fndmi 6653 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2844 . . . . 5 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 ∈ dom 𝑅1)
7 onssr1 9825 . . . . 5 (𝐴 ∈ dom 𝑅1 β†’ 𝐴 βŠ† (𝑅1β€˜π΄))
86, 7syl 17 . . . 4 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 βŠ† (𝑅1β€˜π΄))
9 0ellim 6427 . . . . 5 (Lim 𝐴 β†’ βˆ… ∈ 𝐴)
109adantl 482 . . . 4 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ… ∈ 𝐴)
118, 10sseldd 3983 . . 3 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ… ∈ (𝑅1β€˜π΄))
1211ne0d 4335 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) β‰  βˆ…)
13 rankuni 9857 . . . . . 6 (rankβ€˜βˆͺ π‘₯) = βˆͺ (rankβ€˜π‘₯)
14 rankon 9789 . . . . . . . . 9 (rankβ€˜π‘₯) ∈ On
15 eloni 6374 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ On β†’ Ord (rankβ€˜π‘₯))
16 orduniss 6461 . . . . . . . . 9 (Ord (rankβ€˜π‘₯) β†’ βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯))
1714, 15, 16mp2b 10 . . . . . . . 8 βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯)
1817a1i 11 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯))
19 rankr1ai 9792 . . . . . . . 8 (π‘₯ ∈ (𝑅1β€˜π΄) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
2019adantl 482 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
21 onuni 7775 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ On β†’ βˆͺ (rankβ€˜π‘₯) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 βˆͺ (rankβ€˜π‘₯) ∈ On
233adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ On)
24 ontr2 6411 . . . . . . . 8 ((βˆͺ (rankβ€˜π‘₯) ∈ On ∧ 𝐴 ∈ On) β†’ ((βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯) ∧ (rankβ€˜π‘₯) ∈ 𝐴) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴))
2522, 23, 24sylancr 587 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ ((βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯) ∧ (rankβ€˜π‘₯) ∈ 𝐴) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴))
2618, 20, 25mp2and 697 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴)
2713, 26eqeltrid 2837 . . . . 5 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴)
28 r1elwf 9790 . . . . . . . 8 (π‘₯ ∈ (𝑅1β€˜π΄) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
2928adantl 482 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
30 uniwf 9813 . . . . . . 7 (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ↔ βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
3129, 30sylib 217 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
326adantr 481 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9796 . . . . . 6 ((βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 ∈ dom 𝑅1) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴))
3431, 32, 33syl2anc 584 . . . . 5 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴))
3527, 34mpbird 256 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ π‘₯ ∈ (𝑅1β€˜π΄))
36 r1pwcl 9841 . . . . . 6 (Lim 𝐴 β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
3736adantl 482 . . . . 5 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
3837biimpa 477 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄))
3928ad2antlr 725 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
40 r1elwf 9790 . . . . . . . . 9 (𝑦 ∈ (𝑅1β€˜π΄) β†’ 𝑦 ∈ βˆͺ (𝑅1 β€œ On))
4140adantl 482 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ 𝑦 ∈ βˆͺ (𝑅1 β€œ On))
42 rankprb 9845 . . . . . . . 8 ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝑦 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜{π‘₯, 𝑦}) = suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)))
4339, 41, 42syl2anc 584 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜{π‘₯, 𝑦}) = suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)))
44 limord 6424 . . . . . . . . . 10 (Lim 𝐴 β†’ Ord 𝐴)
4544ad3antlr 729 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ Ord 𝐴)
4620adantr 481 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
47 rankr1ai 9792 . . . . . . . . . 10 (𝑦 ∈ (𝑅1β€˜π΄) β†’ (rankβ€˜π‘¦) ∈ 𝐴)
4847adantl 482 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘¦) ∈ 𝐴)
49 ordunel 7814 . . . . . . . . 9 ((Ord 𝐴 ∧ (rankβ€˜π‘₯) ∈ 𝐴 ∧ (rankβ€˜π‘¦) ∈ 𝐴) β†’ ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1371 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
51 limsuc 7837 . . . . . . . . 9 (Lim 𝐴 β†’ (((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴 ↔ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴))
5251ad3antlr 729 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴 ↔ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴))
5350, 52mpbid 231 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
5443, 53eqeltrd 2833 . . . . . 6 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴)
55 prwf 9805 . . . . . . . 8 ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝑦 ∈ βˆͺ (𝑅1 β€œ On)) β†’ {π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On))
5639, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ {π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On))
5732adantr 481 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9796 . . . . . . 7 (({π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 ∈ dom 𝑅1) β†’ ({π‘₯, 𝑦} ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 584 . . . . . 6 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ ({π‘₯, 𝑦} ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴))
6054, 59mpbird 256 . . . . 5 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ {π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))
6160ralrimiva 3146 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))
6235, 38, 613jca 1128 . . 3 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))
6362ralrimiva 3146 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))
64 fvex 6904 . . 3 (𝑅1β€˜π΄) ∈ V
65 iswun 10698 . . 3 ((𝑅1β€˜π΄) ∈ V β†’ ((𝑅1β€˜π΄) ∈ WUni ↔ (Tr (𝑅1β€˜π΄) ∧ (𝑅1β€˜π΄) β‰  βˆ… ∧ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))))
6664, 65ax-mp 5 . 2 ((𝑅1β€˜π΄) ∈ WUni ↔ (Tr (𝑅1β€˜π΄) ∧ (𝑅1β€˜π΄) β‰  βˆ… ∧ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))))
672, 12, 63, 66syl3anbrc 1343 1 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  Vcvv 3474   βˆͺ cun 3946   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  {cpr 4630  βˆͺ cuni 4908  Tr wtr 5265  dom cdm 5676   β€œ cima 5679  Ord word 6363  Oncon0 6364  Lim wlim 6365  suc csuc 6366  β€˜cfv 6543  π‘…1cr1 9756  rankcrnk 9757  WUnicwun 10694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-r1 9758  df-rank 9759  df-wun 10696
This theorem is referenced by:  r1wunlim  10731  wunex3  10735
  Copyright terms: Public domain W3C validator