MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10733
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9773 . . 3 Tr (𝑅1β€˜π΄)
21a1i 11 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ Tr (𝑅1β€˜π΄))
3 limelon 6427 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 ∈ On)
4 r1fnon 9764 . . . . . . 7 𝑅1 Fn On
54fndmi 6652 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2842 . . . . 5 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 ∈ dom 𝑅1)
7 onssr1 9828 . . . . 5 (𝐴 ∈ dom 𝑅1 β†’ 𝐴 βŠ† (𝑅1β€˜π΄))
86, 7syl 17 . . . 4 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ 𝐴 βŠ† (𝑅1β€˜π΄))
9 0ellim 6426 . . . . 5 (Lim 𝐴 β†’ βˆ… ∈ 𝐴)
109adantl 480 . . . 4 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ… ∈ 𝐴)
118, 10sseldd 3982 . . 3 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ… ∈ (𝑅1β€˜π΄))
1211ne0d 4334 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) β‰  βˆ…)
13 rankuni 9860 . . . . . 6 (rankβ€˜βˆͺ π‘₯) = βˆͺ (rankβ€˜π‘₯)
14 rankon 9792 . . . . . . . . 9 (rankβ€˜π‘₯) ∈ On
15 eloni 6373 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ On β†’ Ord (rankβ€˜π‘₯))
16 orduniss 6460 . . . . . . . . 9 (Ord (rankβ€˜π‘₯) β†’ βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯))
1714, 15, 16mp2b 10 . . . . . . . 8 βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯)
1817a1i 11 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯))
19 rankr1ai 9795 . . . . . . . 8 (π‘₯ ∈ (𝑅1β€˜π΄) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
2019adantl 480 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
21 onuni 7778 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ On β†’ βˆͺ (rankβ€˜π‘₯) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 βˆͺ (rankβ€˜π‘₯) ∈ On
233adantr 479 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ On)
24 ontr2 6410 . . . . . . . 8 ((βˆͺ (rankβ€˜π‘₯) ∈ On ∧ 𝐴 ∈ On) β†’ ((βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯) ∧ (rankβ€˜π‘₯) ∈ 𝐴) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴))
2522, 23, 24sylancr 585 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ ((βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘₯) ∧ (rankβ€˜π‘₯) ∈ 𝐴) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴))
2618, 20, 25mp2and 695 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ (rankβ€˜π‘₯) ∈ 𝐴)
2713, 26eqeltrid 2835 . . . . 5 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴)
28 r1elwf 9793 . . . . . . . 8 (π‘₯ ∈ (𝑅1β€˜π΄) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
2928adantl 480 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
30 uniwf 9816 . . . . . . 7 (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ↔ βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
3129, 30sylib 217 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
326adantr 479 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9799 . . . . . 6 ((βˆͺ π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 ∈ dom 𝑅1) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴))
3431, 32, 33syl2anc 582 . . . . 5 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜βˆͺ π‘₯) ∈ 𝐴))
3527, 34mpbird 256 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆͺ π‘₯ ∈ (𝑅1β€˜π΄))
36 r1pwcl 9844 . . . . . 6 (Lim 𝐴 β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
3736adantl 480 . . . . 5 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
3837biimpa 475 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄))
3928ad2antlr 723 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
40 r1elwf 9793 . . . . . . . . 9 (𝑦 ∈ (𝑅1β€˜π΄) β†’ 𝑦 ∈ βˆͺ (𝑅1 β€œ On))
4140adantl 480 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ 𝑦 ∈ βˆͺ (𝑅1 β€œ On))
42 rankprb 9848 . . . . . . . 8 ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝑦 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜{π‘₯, 𝑦}) = suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)))
4339, 41, 42syl2anc 582 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜{π‘₯, 𝑦}) = suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)))
44 limord 6423 . . . . . . . . . 10 (Lim 𝐴 β†’ Ord 𝐴)
4544ad3antlr 727 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ Ord 𝐴)
4620adantr 479 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘₯) ∈ 𝐴)
47 rankr1ai 9795 . . . . . . . . . 10 (𝑦 ∈ (𝑅1β€˜π΄) β†’ (rankβ€˜π‘¦) ∈ 𝐴)
4847adantl 480 . . . . . . . . 9 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘¦) ∈ 𝐴)
49 ordunel 7817 . . . . . . . . 9 ((Ord 𝐴 ∧ (rankβ€˜π‘₯) ∈ 𝐴 ∧ (rankβ€˜π‘¦) ∈ 𝐴) β†’ ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1369 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
51 limsuc 7840 . . . . . . . . 9 (Lim 𝐴 β†’ (((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴 ↔ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴))
5251ad3antlr 727 . . . . . . . 8 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴 ↔ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴))
5350, 52mpbid 231 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ suc ((rankβ€˜π‘₯) βˆͺ (rankβ€˜π‘¦)) ∈ 𝐴)
5443, 53eqeltrd 2831 . . . . . 6 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴)
55 prwf 9808 . . . . . . . 8 ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝑦 ∈ βˆͺ (𝑅1 β€œ On)) β†’ {π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On))
5639, 41, 55syl2anc 582 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ {π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On))
5732adantr 479 . . . . . . 7 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9799 . . . . . . 7 (({π‘₯, 𝑦} ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 ∈ dom 𝑅1) β†’ ({π‘₯, 𝑦} ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 582 . . . . . 6 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ ({π‘₯, 𝑦} ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜{π‘₯, 𝑦}) ∈ 𝐴))
6054, 59mpbird 256 . . . . 5 ((((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) ∧ 𝑦 ∈ (𝑅1β€˜π΄)) β†’ {π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))
6160ralrimiva 3144 . . . 4 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))
6235, 38, 613jca 1126 . . 3 (((𝐴 ∈ 𝑉 ∧ Lim 𝐴) ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))
6362ralrimiva 3144 . 2 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))
64 fvex 6903 . . 3 (𝑅1β€˜π΄) ∈ V
65 iswun 10701 . . 3 ((𝑅1β€˜π΄) ∈ V β†’ ((𝑅1β€˜π΄) ∈ WUni ↔ (Tr (𝑅1β€˜π΄) ∧ (𝑅1β€˜π΄) β‰  βˆ… ∧ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄)))))
6664, 65ax-mp 5 . 2 ((𝑅1β€˜π΄) ∈ WUni ↔ (Tr (𝑅1β€˜π΄) ∧ (𝑅1β€˜π΄) β‰  βˆ… ∧ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(βˆͺ π‘₯ ∈ (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄) ∧ βˆ€π‘¦ ∈ (𝑅1β€˜π΄){π‘₯, 𝑦} ∈ (𝑅1β€˜π΄))))
672, 12, 63, 66syl3anbrc 1341 1 ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  Vcvv 3472   βˆͺ cun 3945   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {cpr 4629  βˆͺ cuni 4907  Tr wtr 5264  dom cdm 5675   β€œ cima 5678  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365  β€˜cfv 6542  π‘…1cr1 9759  rankcrnk 9760  WUnicwun 10697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762  df-wun 10699
This theorem is referenced by:  r1wunlim  10734  wunex3  10738
  Copyright terms: Public domain W3C validator