MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10350
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9392 . . 3 Tr (𝑅1𝐴)
21a1i 11 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → Tr (𝑅1𝐴))
3 limelon 6276 . . . . . 6 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ On)
4 r1fnon 9383 . . . . . . 7 𝑅1 Fn On
54fndmi 6482 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2849 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1)
7 onssr1 9447 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
86, 7syl 17 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ⊆ (𝑅1𝐴))
9 0ellim 6275 . . . . 5 (Lim 𝐴 → ∅ ∈ 𝐴)
109adantl 485 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ 𝐴)
118, 10sseldd 3902 . . 3 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ (𝑅1𝐴))
1211ne0d 4250 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ≠ ∅)
13 rankuni 9479 . . . . . 6 (rank‘ 𝑥) = (rank‘𝑥)
14 rankon 9411 . . . . . . . . 9 (rank‘𝑥) ∈ On
15 eloni 6223 . . . . . . . . 9 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
16 orduniss 6307 . . . . . . . . 9 (Ord (rank‘𝑥) → (rank‘𝑥) ⊆ (rank‘𝑥))
1714, 15, 16mp2b 10 . . . . . . . 8 (rank‘𝑥) ⊆ (rank‘𝑥)
1817a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ⊆ (rank‘𝑥))
19 rankr1ai 9414 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → (rank‘𝑥) ∈ 𝐴)
2019adantl 485 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
21 onuni 7572 . . . . . . . . 9 ((rank‘𝑥) ∈ On → (rank‘𝑥) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 (rank‘𝑥) ∈ On
233adantr 484 . . . . . . . 8 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ On)
24 ontr2 6260 . . . . . . . 8 (( (rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2522, 23, 24sylancr 590 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2618, 20, 25mp2and 699 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
2713, 26eqeltrid 2842 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘ 𝑥) ∈ 𝐴)
28 r1elwf 9412 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → 𝑥 (𝑅1 “ On))
2928adantl 485 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
30 uniwf 9435 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
3129, 30sylib 221 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
326adantr 484 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9418 . . . . . 6 (( 𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3431, 32, 33syl2anc 587 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3527, 34mpbird 260 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ∈ (𝑅1𝐴))
36 r1pwcl 9463 . . . . . 6 (Lim 𝐴 → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3736adantl 485 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3837biimpa 480 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
3928ad2antlr 727 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
40 r1elwf 9412 . . . . . . . . 9 (𝑦 ∈ (𝑅1𝐴) → 𝑦 (𝑅1 “ On))
4140adantl 485 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑦 (𝑅1 “ On))
42 rankprb 9467 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
4339, 41, 42syl2anc 587 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
44 limord 6272 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
4544ad3antlr 731 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → Ord 𝐴)
4620adantr 484 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
47 rankr1ai 9414 . . . . . . . . . 10 (𝑦 ∈ (𝑅1𝐴) → (rank‘𝑦) ∈ 𝐴)
4847adantl 485 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑦) ∈ 𝐴)
49 ordunel 7606 . . . . . . . . 9 ((Ord 𝐴 ∧ (rank‘𝑥) ∈ 𝐴 ∧ (rank‘𝑦) ∈ 𝐴) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1373 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
51 limsuc 7628 . . . . . . . . 9 (Lim 𝐴 → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5251ad3antlr 731 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5350, 52mpbid 235 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5443, 53eqeltrd 2838 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) ∈ 𝐴)
55 prwf 9427 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5639, 41, 55syl2anc 587 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5732adantr 484 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9418 . . . . . . 7 (({𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 587 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6054, 59mpbird 260 . . . . 5 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1𝐴))
6160ralrimiva 3105 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))
6235, 38, 613jca 1130 . . 3 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
6362ralrimiva 3105 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
64 fvex 6730 . . 3 (𝑅1𝐴) ∈ V
65 iswun 10318 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))))
6664, 65ax-mp 5 . 2 ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))))
672, 12, 63, 66syl3anbrc 1345 1 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408  cun 3864  wss 3866  c0 4237  𝒫 cpw 4513  {cpr 4543   cuni 4819  Tr wtr 5161  dom cdm 5551  cima 5554  Ord word 6212  Oncon0 6213  Lim wlim 6214  suc csuc 6215  cfv 6380  𝑅1cr1 9378  rankcrnk 9379  WUnicwun 10314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380  df-rank 9381  df-wun 10316
This theorem is referenced by:  r1wunlim  10351  wunex3  10355
  Copyright terms: Public domain W3C validator