MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10627
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9669 . . 3 Tr (𝑅1𝐴)
21a1i 11 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → Tr (𝑅1𝐴))
3 limelon 6371 . . . . . 6 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ On)
4 r1fnon 9660 . . . . . . 7 𝑅1 Fn On
54fndmi 6585 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2842 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1)
7 onssr1 9724 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
86, 7syl 17 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ⊆ (𝑅1𝐴))
9 0ellim 6370 . . . . 5 (Lim 𝐴 → ∅ ∈ 𝐴)
109adantl 481 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ 𝐴)
118, 10sseldd 3935 . . 3 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ (𝑅1𝐴))
1211ne0d 4292 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ≠ ∅)
13 rankuni 9756 . . . . . 6 (rank‘ 𝑥) = (rank‘𝑥)
14 rankon 9688 . . . . . . . . 9 (rank‘𝑥) ∈ On
15 eloni 6316 . . . . . . . . 9 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
16 orduniss 6405 . . . . . . . . 9 (Ord (rank‘𝑥) → (rank‘𝑥) ⊆ (rank‘𝑥))
1714, 15, 16mp2b 10 . . . . . . . 8 (rank‘𝑥) ⊆ (rank‘𝑥)
1817a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ⊆ (rank‘𝑥))
19 rankr1ai 9691 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → (rank‘𝑥) ∈ 𝐴)
2019adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
21 onuni 7721 . . . . . . . . 9 ((rank‘𝑥) ∈ On → (rank‘𝑥) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 (rank‘𝑥) ∈ On
233adantr 480 . . . . . . . 8 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ On)
24 ontr2 6354 . . . . . . . 8 (( (rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2522, 23, 24sylancr 587 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2618, 20, 25mp2and 699 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
2713, 26eqeltrid 2835 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘ 𝑥) ∈ 𝐴)
28 r1elwf 9689 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → 𝑥 (𝑅1 “ On))
2928adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
30 uniwf 9712 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
3129, 30sylib 218 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
326adantr 480 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9695 . . . . . 6 (( 𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3431, 32, 33syl2anc 584 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3527, 34mpbird 257 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ∈ (𝑅1𝐴))
36 r1pwcl 9740 . . . . . 6 (Lim 𝐴 → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3736adantl 481 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3837biimpa 476 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
3928ad2antlr 727 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
40 r1elwf 9689 . . . . . . . . 9 (𝑦 ∈ (𝑅1𝐴) → 𝑦 (𝑅1 “ On))
4140adantl 481 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑦 (𝑅1 “ On))
42 rankprb 9744 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
4339, 41, 42syl2anc 584 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
44 limord 6367 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
4544ad3antlr 731 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → Ord 𝐴)
4620adantr 480 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
47 rankr1ai 9691 . . . . . . . . . 10 (𝑦 ∈ (𝑅1𝐴) → (rank‘𝑦) ∈ 𝐴)
4847adantl 481 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑦) ∈ 𝐴)
49 ordunel 7757 . . . . . . . . 9 ((Ord 𝐴 ∧ (rank‘𝑥) ∈ 𝐴 ∧ (rank‘𝑦) ∈ 𝐴) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1373 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
51 limsuc 7779 . . . . . . . . 9 (Lim 𝐴 → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5251ad3antlr 731 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5350, 52mpbid 232 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5443, 53eqeltrd 2831 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) ∈ 𝐴)
55 prwf 9704 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5639, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5732adantr 480 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9695 . . . . . . 7 (({𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 584 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6054, 59mpbird 257 . . . . 5 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1𝐴))
6160ralrimiva 3124 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))
6235, 38, 613jca 1128 . . 3 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
6362ralrimiva 3124 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
64 fvex 6835 . . 3 (𝑅1𝐴) ∈ V
65 iswun 10595 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))))
6664, 65ax-mp 5 . 2 ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))))
672, 12, 63, 66syl3anbrc 1344 1 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cun 3900  wss 3902  c0 4283  𝒫 cpw 4550  {cpr 4578   cuni 4859  Tr wtr 5198  dom cdm 5616  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  cfv 6481  𝑅1cr1 9655  rankcrnk 9656  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658  df-wun 10593
This theorem is referenced by:  r1wunlim  10628  wunex3  10632
  Copyright terms: Public domain W3C validator