MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 10636
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 9678 . . 3 Tr (𝑅1𝐴)
21a1i 11 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → Tr (𝑅1𝐴))
3 limelon 6378 . . . . . 6 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ On)
4 r1fnon 9669 . . . . . . 7 𝑅1 Fn On
54fndmi 6592 . . . . . 6 dom 𝑅1 = On
63, 5eleqtrrdi 2844 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1)
7 onssr1 9733 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
86, 7syl 17 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ⊆ (𝑅1𝐴))
9 0ellim 6377 . . . . 5 (Lim 𝐴 → ∅ ∈ 𝐴)
109adantl 481 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ 𝐴)
118, 10sseldd 3931 . . 3 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ (𝑅1𝐴))
1211ne0d 4291 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ≠ ∅)
13 rankuni 9765 . . . . . 6 (rank‘ 𝑥) = (rank‘𝑥)
14 rankon 9697 . . . . . . . . 9 (rank‘𝑥) ∈ On
15 eloni 6323 . . . . . . . . 9 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
16 orduniss 6412 . . . . . . . . 9 (Ord (rank‘𝑥) → (rank‘𝑥) ⊆ (rank‘𝑥))
1714, 15, 16mp2b 10 . . . . . . . 8 (rank‘𝑥) ⊆ (rank‘𝑥)
1817a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ⊆ (rank‘𝑥))
19 rankr1ai 9700 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → (rank‘𝑥) ∈ 𝐴)
2019adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
21 onuni 7729 . . . . . . . . 9 ((rank‘𝑥) ∈ On → (rank‘𝑥) ∈ On)
2214, 21ax-mp 5 . . . . . . . 8 (rank‘𝑥) ∈ On
233adantr 480 . . . . . . . 8 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ On)
24 ontr2 6361 . . . . . . . 8 (( (rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2522, 23, 24sylancr 587 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2618, 20, 25mp2and 699 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
2713, 26eqeltrid 2837 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘ 𝑥) ∈ 𝐴)
28 r1elwf 9698 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → 𝑥 (𝑅1 “ On))
2928adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
30 uniwf 9721 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
3129, 30sylib 218 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
326adantr 480 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
33 rankr1ag 9704 . . . . . 6 (( 𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3431, 32, 33syl2anc 584 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3527, 34mpbird 257 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ∈ (𝑅1𝐴))
36 r1pwcl 9749 . . . . . 6 (Lim 𝐴 → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3736adantl 481 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3837biimpa 476 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
3928ad2antlr 727 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
40 r1elwf 9698 . . . . . . . . 9 (𝑦 ∈ (𝑅1𝐴) → 𝑦 (𝑅1 “ On))
4140adantl 481 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑦 (𝑅1 “ On))
42 rankprb 9753 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
4339, 41, 42syl2anc 584 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
44 limord 6374 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
4544ad3antlr 731 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → Ord 𝐴)
4620adantr 480 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
47 rankr1ai 9700 . . . . . . . . . 10 (𝑦 ∈ (𝑅1𝐴) → (rank‘𝑦) ∈ 𝐴)
4847adantl 481 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑦) ∈ 𝐴)
49 ordunel 7765 . . . . . . . . 9 ((Ord 𝐴 ∧ (rank‘𝑥) ∈ 𝐴 ∧ (rank‘𝑦) ∈ 𝐴) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5045, 46, 48, 49syl3anc 1373 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
51 limsuc 7787 . . . . . . . . 9 (Lim 𝐴 → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5251ad3antlr 731 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5350, 52mpbid 232 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5443, 53eqeltrd 2833 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) ∈ 𝐴)
55 prwf 9713 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5639, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5732adantr 480 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
58 rankr1ag 9704 . . . . . . 7 (({𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
5956, 57, 58syl2anc 584 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6054, 59mpbird 257 . . . . 5 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1𝐴))
6160ralrimiva 3125 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))
6235, 38, 613jca 1128 . . 3 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
6362ralrimiva 3125 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
64 fvex 6843 . . 3 (𝑅1𝐴) ∈ V
65 iswun 10604 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))))
6664, 65ax-mp 5 . 2 ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))))
672, 12, 63, 66syl3anbrc 1344 1 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cun 3896  wss 3898  c0 4282  𝒫 cpw 4551  {cpr 4579   cuni 4860  Tr wtr 5202  dom cdm 5621  cima 5624  Ord word 6312  Oncon0 6313  Lim wlim 6314  suc csuc 6315  cfv 6488  𝑅1cr1 9664  rankcrnk 9665  WUnicwun 10600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-reg 9487  ax-inf2 9540
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-r1 9666  df-rank 9667  df-wun 10602
This theorem is referenced by:  r1wunlim  10637  wunex3  10641
  Copyright terms: Public domain W3C validator