Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqcoms | Structured version Visualization version GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
Copyright terms: Public domain | W3C validator |