![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | pm2.65i 193 | . 2 ⊢ ¬ 𝜑 |
4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21fal 1562 pm2.21ddne 3025 smo11 8367 ackbij1lem16 10233 cfsmolem 10268 domtriomlem 10440 konigthlem 10566 grur1 10818 uzdisj 13579 nn0disj 13622 psgnunilem2 19405 nmoleub2lem3 24863 i1f0 25437 itg2const2 25492 bposlem3 27026 bposlem9 27032 pntpbnd1 27326 ccatf1 32383 fzto1st1 32532 cycpmco2lem5 32560 mxidlirred 32863 esumpcvgval 33375 sgnmul 33840 sgnmulsgn 33847 sgnmulsgp 33848 signstfvneq0 33882 derangsn 34460 heiborlem8 36990 lkrpssN 38337 cdleme27a 39542 aks4d1p3 41250 aks4d1p5 41252 aks4d1p8 41259 sticksstones22 41291 infdesc 41688 pellfundex 41927 monotoddzzfi 41984 jm2.23 42038 rp-isfinite6 42572 r1rankcld 43293 iccpartiltu 46389 iccpartigtl 46390 |
Copyright terms: Public domain | W3C validator |