![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | pm2.65i 193 | . 2 ⊢ ¬ 𝜑 |
4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21fal 1563 pm2.21ddne 3026 smo11 8366 ackbij1lem16 10232 cfsmolem 10267 domtriomlem 10439 konigthlem 10565 grur1 10817 uzdisj 13576 nn0disj 13619 psgnunilem2 19365 nmoleub2lem3 24638 i1f0 25211 itg2const2 25266 bposlem3 26796 bposlem9 26802 pntpbnd1 27096 ccatf1 32153 fzto1st1 32302 cycpmco2lem5 32330 mxidlirred 32633 esumpcvgval 33145 sgnmul 33610 sgnmulsgn 33617 sgnmulsgp 33618 signstfvneq0 33652 derangsn 34230 heiborlem8 36772 lkrpssN 38119 cdleme27a 39324 aks4d1p3 41029 aks4d1p5 41031 aks4d1p8 41038 sticksstones22 41070 infdesc 41467 pellfundex 41706 monotoddzzfi 41763 jm2.23 41817 rp-isfinite6 42351 r1rankcld 43072 iccpartiltu 46169 iccpartigtl 46170 |
Copyright terms: Public domain | W3C validator |