![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | pm2.65i 193 | . 2 ⊢ ¬ 𝜑 |
4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21fal 1564 pm2.21ddne 3027 smo11 8364 ackbij1lem16 10230 cfsmolem 10265 domtriomlem 10437 konigthlem 10563 grur1 10815 uzdisj 13574 nn0disj 13617 psgnunilem2 19363 nmoleub2lem3 24631 i1f0 25204 itg2const2 25259 bposlem3 26789 bposlem9 26795 pntpbnd1 27089 ccatf1 32115 fzto1st1 32261 cycpmco2lem5 32289 mxidlirred 32588 esumpcvgval 33076 sgnmul 33541 sgnmulsgn 33548 sgnmulsgp 33549 signstfvneq0 33583 derangsn 34161 heiborlem8 36686 lkrpssN 38033 cdleme27a 39238 aks4d1p3 40943 aks4d1p5 40945 aks4d1p8 40952 sticksstones22 40984 infdesc 41385 pellfundex 41624 monotoddzzfi 41681 jm2.23 41735 rp-isfinite6 42269 r1rankcld 42990 iccpartiltu 46090 iccpartigtl 46091 |
Copyright terms: Public domain | W3C validator |