| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.65i 194 | . 2 ⊢ ¬ 𝜑 |
| 4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
| Copyright terms: Public domain | W3C validator |