Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | pm2.65i 193 | . 2 ⊢ ¬ 𝜑 |
4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21fal 1561 pm2.21ddne 3029 smo11 8195 ackbij1lem16 9991 cfsmolem 10026 domtriomlem 10198 konigthlem 10324 grur1 10576 uzdisj 13329 nn0disj 13372 psgnunilem2 19103 nmoleub2lem3 24278 i1f0 24851 itg2const2 24906 bposlem3 26434 bposlem9 26440 pntpbnd1 26734 ccatf1 31223 fzto1st1 31369 cycpmco2lem5 31397 esumpcvgval 32046 sgnmul 32509 sgnmulsgn 32516 sgnmulsgp 32517 signstfvneq0 32551 derangsn 33132 heiborlem8 35976 lkrpssN 37177 cdleme27a 38381 aks4d1p3 40086 aks4d1p5 40088 aks4d1p8 40095 sticksstones22 40124 infdesc 40480 pellfundex 40708 monotoddzzfi 40764 jm2.23 40818 rp-isfinite6 41125 r1rankcld 41849 iccpartiltu 44874 iccpartigtl 44875 |
Copyright terms: Public domain | W3C validator |