Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.21dd | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | pm2.65i 193 | . 2 ⊢ ¬ 𝜑 |
4 | 3 | pm2.21i 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21fal 1561 pm2.21ddne 3028 smo11 8166 ackbij1lem16 9922 cfsmolem 9957 domtriomlem 10129 konigthlem 10255 grur1 10507 uzdisj 13258 nn0disj 13301 psgnunilem2 19018 nmoleub2lem3 24184 i1f0 24756 itg2const2 24811 bposlem3 26339 bposlem9 26345 pntpbnd1 26639 ccatf1 31125 fzto1st1 31271 cycpmco2lem5 31299 esumpcvgval 31946 sgnmul 32409 sgnmulsgn 32416 sgnmulsgp 32417 signstfvneq0 32451 derangsn 33032 heiborlem8 35903 lkrpssN 37104 cdleme27a 38308 aks4d1p3 40014 aks4d1p5 40016 aks4d1p8 40023 sticksstones22 40052 infdesc 40396 pellfundex 40624 monotoddzzfi 40680 jm2.23 40734 rp-isfinite6 41023 r1rankcld 41738 iccpartiltu 44762 iccpartigtl 44763 |
Copyright terms: Public domain | W3C validator |