MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   GIF version

Theorem winalim2 10594
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem winalim2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 10590 . . . 4 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
2 winainf 10592 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
3 cardalephex 9988 . . . . 5 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
42, 3syl 17 . . . 4 (𝐴 ∈ Inaccw → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
51, 4mpbid 232 . . 3 (𝐴 ∈ Inaccw → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
65adantr 480 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
7 df-rex 3058 . . 3 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ ∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)))
8 simprr 772 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 = (ℵ‘𝑥))
98eqcomd 2739 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (ℵ‘𝑥) = 𝐴)
10 simprl 770 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝑥 ∈ On)
11 onzsl 7782 . . . . . . . 8 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
1210, 11sylib 218 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
13 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 ≠ ω)
14 fveq2 6828 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
15 aleph0 9964 . . . . . . . . . . . . . 14 (ℵ‘∅) = ω
1614, 15eqtrdi 2784 . . . . . . . . . . . . 13 (𝑥 = ∅ → (ℵ‘𝑥) = ω)
17 eqtr 2753 . . . . . . . . . . . . 13 ((𝐴 = (ℵ‘𝑥) ∧ (ℵ‘𝑥) = ω) → 𝐴 = ω)
1816, 17sylan2 593 . . . . . . . . . . . 12 ((𝐴 = (ℵ‘𝑥) ∧ 𝑥 = ∅) → 𝐴 = ω)
1918ex 412 . . . . . . . . . . 11 (𝐴 = (ℵ‘𝑥) → (𝑥 = ∅ → 𝐴 = ω))
2019necon3ad 2942 . . . . . . . . . 10 (𝐴 = (ℵ‘𝑥) → (𝐴 ≠ ω → ¬ 𝑥 = ∅))
218, 13, 20sylc 65 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ 𝑥 = ∅)
2221pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ → Lim 𝑥))
23 breq1 5096 . . . . . . . . . . . . . 14 (𝑧 = (ℵ‘𝑦) → (𝑧𝑤 ↔ (ℵ‘𝑦) ≺ 𝑤))
2423rexbidv 3157 . . . . . . . . . . . . 13 (𝑧 = (ℵ‘𝑦) → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
25 elwina 10584 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
2625simp3bi 1147 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
2726ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
28 onsuc 7749 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
29 vex 3441 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
3029sucid 6395 . . . . . . . . . . . . . . . 16 𝑦 ∈ suc 𝑦
31 alephord2i 9975 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ On → (𝑦 ∈ suc 𝑦 → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦)))
3228, 30, 31mpisyl 21 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
3332ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
34 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘𝑥))
35 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3635ad2antll 729 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3734, 36eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘suc 𝑦))
3833, 37eleqtrrd 2836 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ 𝐴)
3924, 27, 38rspcdva 3574 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4039expr 456 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
41 iscard 9875 . . . . . . . . . . . . . . . . . . 19 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑤𝐴 𝑤𝐴))
4241simprbi 496 . . . . . . . . . . . . . . . . . 18 ((card‘𝐴) = 𝐴 → ∀𝑤𝐴 𝑤𝐴)
43 rsp 3221 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴 𝑤𝐴 → (𝑤𝐴𝑤𝐴))
441, 42, 433syl 18 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → (𝑤𝐴𝑤𝐴))
4544ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤𝐴))
4637breq2d 5105 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
4745, 46sylibd 239 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
48 alephnbtwn2 9970 . . . . . . . . . . . . . . . 16 ¬ ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))
49 pm3.21 471 . . . . . . . . . . . . . . . 16 (𝑤 ≺ (ℵ‘suc 𝑦) → ((ℵ‘𝑦) ≺ 𝑤 → ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))))
5048, 49mtoi 199 . . . . . . . . . . . . . . 15 (𝑤 ≺ (ℵ‘suc 𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5147, 50syl6 35 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑤))
5251imp 406 . . . . . . . . . . . . 13 (((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) ∧ 𝑤𝐴) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5352nrexdv 3128 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
5453expr 456 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
5540, 54pm2.65d 196 . . . . . . . . . 10 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → ¬ 𝑥 = suc 𝑦)
5655nrexdv 3128 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ ∃𝑦 ∈ On 𝑥 = suc 𝑦)
5756pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (∃𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥))
58 simpr 484 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥)
5958a1i 11 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥))
6022, 57, 593jaod 1431 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim 𝑥))
6112, 60mpd 15 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → Lim 𝑥)
629, 61jca 511 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
6362ex 412 . . . 4 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ((𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
6463eximdv 1918 . . 3 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
657, 64biimtrid 242 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
666, 65mpd 15 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282   class class class wbr 5093  Oncon0 6311  Lim wlim 6312  suc csuc 6313  cfv 6486  ωcom 7802  csdm 8874  cardccrd 9835  cale 9836  cfccf 9837  Inaccwcwina 10580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-har 9450  df-card 9839  df-aleph 9840  df-cf 9841  df-wina 10582
This theorem is referenced by:  winafp  10595
  Copyright terms: Public domain W3C validator