MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   GIF version

Theorem winalim2 10197
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem winalim2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 10193 . . . 4 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
2 winainf 10195 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
3 cardalephex 9591 . . . . 5 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
42, 3syl 17 . . . 4 (𝐴 ∈ Inaccw → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
51, 4mpbid 235 . . 3 (𝐴 ∈ Inaccw → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
65adantr 484 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
7 df-rex 3059 . . 3 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ ∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)))
8 simprr 773 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 = (ℵ‘𝑥))
98eqcomd 2744 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (ℵ‘𝑥) = 𝐴)
10 simprl 771 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝑥 ∈ On)
11 onzsl 7581 . . . . . . . 8 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
1210, 11sylib 221 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
13 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 ≠ ω)
14 fveq2 6675 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
15 aleph0 9567 . . . . . . . . . . . . . 14 (ℵ‘∅) = ω
1614, 15eqtrdi 2789 . . . . . . . . . . . . 13 (𝑥 = ∅ → (ℵ‘𝑥) = ω)
17 eqtr 2758 . . . . . . . . . . . . 13 ((𝐴 = (ℵ‘𝑥) ∧ (ℵ‘𝑥) = ω) → 𝐴 = ω)
1816, 17sylan2 596 . . . . . . . . . . . 12 ((𝐴 = (ℵ‘𝑥) ∧ 𝑥 = ∅) → 𝐴 = ω)
1918ex 416 . . . . . . . . . . 11 (𝐴 = (ℵ‘𝑥) → (𝑥 = ∅ → 𝐴 = ω))
2019necon3ad 2947 . . . . . . . . . 10 (𝐴 = (ℵ‘𝑥) → (𝐴 ≠ ω → ¬ 𝑥 = ∅))
218, 13, 20sylc 65 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ 𝑥 = ∅)
2221pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ → Lim 𝑥))
23 breq1 5034 . . . . . . . . . . . . . 14 (𝑧 = (ℵ‘𝑦) → (𝑧𝑤 ↔ (ℵ‘𝑦) ≺ 𝑤))
2423rexbidv 3207 . . . . . . . . . . . . 13 (𝑧 = (ℵ‘𝑦) → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
25 elwina 10187 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
2625simp3bi 1148 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
2726ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
28 suceloni 7548 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
29 vex 3402 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
3029sucid 6252 . . . . . . . . . . . . . . . 16 𝑦 ∈ suc 𝑦
31 alephord2i 9578 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ On → (𝑦 ∈ suc 𝑦 → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦)))
3228, 30, 31mpisyl 21 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
3332ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
34 simplrr 778 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘𝑥))
35 fveq2 6675 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3635ad2antll 729 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3734, 36eqtrd 2773 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘suc 𝑦))
3833, 37eleqtrrd 2836 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ 𝐴)
3924, 27, 38rspcdva 3529 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4039expr 460 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
41 iscard 9478 . . . . . . . . . . . . . . . . . . 19 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑤𝐴 𝑤𝐴))
4241simprbi 500 . . . . . . . . . . . . . . . . . 18 ((card‘𝐴) = 𝐴 → ∀𝑤𝐴 𝑤𝐴)
43 rsp 3118 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴 𝑤𝐴 → (𝑤𝐴𝑤𝐴))
441, 42, 433syl 18 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → (𝑤𝐴𝑤𝐴))
4544ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤𝐴))
4637breq2d 5043 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
4745, 46sylibd 242 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
48 alephnbtwn2 9573 . . . . . . . . . . . . . . . 16 ¬ ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))
49 pm3.21 475 . . . . . . . . . . . . . . . 16 (𝑤 ≺ (ℵ‘suc 𝑦) → ((ℵ‘𝑦) ≺ 𝑤 → ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))))
5048, 49mtoi 202 . . . . . . . . . . . . . . 15 (𝑤 ≺ (ℵ‘suc 𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5147, 50syl6 35 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑤))
5251imp 410 . . . . . . . . . . . . 13 (((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) ∧ 𝑤𝐴) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5352nrexdv 3180 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
5453expr 460 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
5540, 54pm2.65d 199 . . . . . . . . . 10 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → ¬ 𝑥 = suc 𝑦)
5655nrexdv 3180 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ ∃𝑦 ∈ On 𝑥 = suc 𝑦)
5756pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (∃𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥))
58 simpr 488 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥)
5958a1i 11 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥))
6022, 57, 593jaod 1429 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim 𝑥))
6112, 60mpd 15 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → Lim 𝑥)
629, 61jca 515 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
6362ex 416 . . . 4 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ((𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
6463eximdv 1923 . . 3 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
657, 64syl5bi 245 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
666, 65mpd 15 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1087   = wceq 1542  wex 1786  wcel 2113  wne 2934  wral 3053  wrex 3054  Vcvv 3398  wss 3844  c0 4212   class class class wbr 5031  Oncon0 6173  Lim wlim 6174  suc csuc 6175  cfv 6340  ωcom 7600  csdm 8555  cardccrd 9438  cale 9439  cfccf 9440  Inaccwcwina 10183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-inf2 9178
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7128  df-om 7601  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-oi 9048  df-har 9095  df-card 9442  df-aleph 9443  df-cf 9444  df-wina 10185
This theorem is referenced by:  winafp  10198
  Copyright terms: Public domain W3C validator