MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   GIF version

Theorem winalim2 10117
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem winalim2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 10113 . . . 4 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
2 winainf 10115 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
3 cardalephex 9515 . . . . 5 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
42, 3syl 17 . . . 4 (𝐴 ∈ Inaccw → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
51, 4mpbid 234 . . 3 (𝐴 ∈ Inaccw → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
65adantr 483 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
7 df-rex 3144 . . 3 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ ∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)))
8 simprr 771 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 = (ℵ‘𝑥))
98eqcomd 2827 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (ℵ‘𝑥) = 𝐴)
10 simprl 769 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝑥 ∈ On)
11 onzsl 7560 . . . . . . . 8 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
1210, 11sylib 220 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
13 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 ≠ ω)
14 fveq2 6669 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
15 aleph0 9491 . . . . . . . . . . . . . 14 (ℵ‘∅) = ω
1614, 15syl6eq 2872 . . . . . . . . . . . . 13 (𝑥 = ∅ → (ℵ‘𝑥) = ω)
17 eqtr 2841 . . . . . . . . . . . . 13 ((𝐴 = (ℵ‘𝑥) ∧ (ℵ‘𝑥) = ω) → 𝐴 = ω)
1816, 17sylan2 594 . . . . . . . . . . . 12 ((𝐴 = (ℵ‘𝑥) ∧ 𝑥 = ∅) → 𝐴 = ω)
1918ex 415 . . . . . . . . . . 11 (𝐴 = (ℵ‘𝑥) → (𝑥 = ∅ → 𝐴 = ω))
2019necon3ad 3029 . . . . . . . . . 10 (𝐴 = (ℵ‘𝑥) → (𝐴 ≠ ω → ¬ 𝑥 = ∅))
218, 13, 20sylc 65 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ 𝑥 = ∅)
2221pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ → Lim 𝑥))
23 breq1 5068 . . . . . . . . . . . . . 14 (𝑧 = (ℵ‘𝑦) → (𝑧𝑤 ↔ (ℵ‘𝑦) ≺ 𝑤))
2423rexbidv 3297 . . . . . . . . . . . . 13 (𝑧 = (ℵ‘𝑦) → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
25 elwina 10107 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
2625simp3bi 1143 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
2726ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
28 suceloni 7527 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
29 vex 3497 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
3029sucid 6269 . . . . . . . . . . . . . . . 16 𝑦 ∈ suc 𝑦
31 alephord2i 9502 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ On → (𝑦 ∈ suc 𝑦 → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦)))
3228, 30, 31mpisyl 21 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
3332ad2antrl 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
34 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘𝑥))
35 fveq2 6669 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3635ad2antll 727 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3734, 36eqtrd 2856 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘suc 𝑦))
3833, 37eleqtrrd 2916 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ 𝐴)
3924, 27, 38rspcdva 3624 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4039expr 459 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
41 iscard 9403 . . . . . . . . . . . . . . . . . . 19 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑤𝐴 𝑤𝐴))
4241simprbi 499 . . . . . . . . . . . . . . . . . 18 ((card‘𝐴) = 𝐴 → ∀𝑤𝐴 𝑤𝐴)
43 rsp 3205 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴 𝑤𝐴 → (𝑤𝐴𝑤𝐴))
441, 42, 433syl 18 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → (𝑤𝐴𝑤𝐴))
4544ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤𝐴))
4637breq2d 5077 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
4745, 46sylibd 241 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
48 alephnbtwn2 9497 . . . . . . . . . . . . . . . 16 ¬ ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))
49 pm3.21 474 . . . . . . . . . . . . . . . 16 (𝑤 ≺ (ℵ‘suc 𝑦) → ((ℵ‘𝑦) ≺ 𝑤 → ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))))
5048, 49mtoi 201 . . . . . . . . . . . . . . 15 (𝑤 ≺ (ℵ‘suc 𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5147, 50syl6 35 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑤))
5251imp 409 . . . . . . . . . . . . 13 (((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) ∧ 𝑤𝐴) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5352nrexdv 3270 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
5453expr 459 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
5540, 54pm2.65d 198 . . . . . . . . . 10 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → ¬ 𝑥 = suc 𝑦)
5655nrexdv 3270 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ ∃𝑦 ∈ On 𝑥 = suc 𝑦)
5756pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (∃𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥))
58 simpr 487 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥)
5958a1i 11 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥))
6022, 57, 593jaod 1424 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim 𝑥))
6112, 60mpd 15 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → Lim 𝑥)
629, 61jca 514 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
6362ex 415 . . . 4 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ((𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
6463eximdv 1914 . . 3 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
657, 64syl5bi 244 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
666, 65mpd 15 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5065  Oncon0 6190  Lim wlim 6191  suc csuc 6192  cfv 6354  ωcom 7579  csdm 8507  cardccrd 9363  cale 9364  cfccf 9365  Inaccwcwina 10103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-oi 8973  df-har 9021  df-card 9367  df-aleph 9368  df-cf 9369  df-wina 10105
This theorem is referenced by:  winafp  10118
  Copyright terms: Public domain W3C validator