MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Visualization version   GIF version

Theorem sqrmo 15287
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1214 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = 𝐴)
2 simprr1 1220 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦↑2) = 𝐴)
31, 2eqtr4d 2778 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = (𝑦↑2))
4 sqeqor 14252 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
54ad2ant2r 747 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
63, 5mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = 𝑦𝑥 = -𝑦))
76ord 864 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑥 = -𝑦))
8 3simpc 1149 . . . . . . . . . . 11 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 fveq2 6907 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦))
109breq2d 5160 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘-𝑦)))
11 oveq2 7439 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦))
12 neleq1 3050 . . . . . . . . . . . . 13 ((i · 𝑥) = (i · -𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1311, 12syl 17 . . . . . . . . . . . 12 (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1410, 13anbi12d 632 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
158, 14syl5ibcom 245 . . . . . . . . . 10 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
1615ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
177, 16syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
18 negeq 11498 . . . . . . . . . . . . . . 15 (𝑦 = 0 → -𝑦 = -0)
19 neg0 11553 . . . . . . . . . . . . . . 15 -0 = 0
2018, 19eqtrdi 2791 . . . . . . . . . . . . . 14 (𝑦 = 0 → -𝑦 = 0)
2120eqeq2d 2746 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 0))
22 eqeq2 2747 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2321, 22bitr4d 282 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 𝑦))
2423biimpcd 249 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦))
2524necon3bd 2952 . . . . . . . . . 10 (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
267, 25syli 39 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
27 3simpc 1149 . . . . . . . . . . . 12 (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
28 cnpart 15276 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
2927, 28imbitrid 244 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3029impancom 451 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3226, 31syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3317, 32pm2.65d 196 . . . . . . 7 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ¬ ¬ 𝑥 = 𝑦)
3433notnotrd 133 . . . . . 6 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3534an4s 660 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3635ex 412 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
3736a1i 11 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦)))
3837ralrimivv 3198 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
39 oveq1 7438 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
4039eqeq1d 2737 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
41 fveq2 6907 . . . . 5 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
4241breq2d 5160 . . . 4 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
43 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
44 neleq1 3050 . . . . 5 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4543, 44syl 17 . . . 4 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4640, 42, 453anbi123d 1435 . . 3 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
4746rmo4 3739 . 2 (∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
4838, 47sylibr 234 1 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wnel 3044  wral 3059  ∃*wrmo 3377   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  ici 11155   · cmul 11158  cle 11294  -cneg 11491  2c2 12319  +crp 13032  cexp 14099  cre 15133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  resqreu  15288  sqrtneg  15303  sqreu  15396
  Copyright terms: Public domain W3C validator