MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Visualization version   GIF version

Theorem sqrmo 15300
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1215 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = 𝐴)
2 simprr1 1221 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦↑2) = 𝐴)
31, 2eqtr4d 2783 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = (𝑦↑2))
4 sqeqor 14265 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
54ad2ant2r 746 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
63, 5mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = 𝑦𝑥 = -𝑦))
76ord 863 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑥 = -𝑦))
8 3simpc 1150 . . . . . . . . . . 11 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 fveq2 6920 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦))
109breq2d 5178 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘-𝑦)))
11 oveq2 7456 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦))
12 neleq1 3058 . . . . . . . . . . . . 13 ((i · 𝑥) = (i · -𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1311, 12syl 17 . . . . . . . . . . . 12 (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1410, 13anbi12d 631 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
158, 14syl5ibcom 245 . . . . . . . . . 10 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
1615ad2antlr 726 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
177, 16syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
18 negeq 11528 . . . . . . . . . . . . . . 15 (𝑦 = 0 → -𝑦 = -0)
19 neg0 11582 . . . . . . . . . . . . . . 15 -0 = 0
2018, 19eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑦 = 0 → -𝑦 = 0)
2120eqeq2d 2751 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 0))
22 eqeq2 2752 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2321, 22bitr4d 282 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 𝑦))
2423biimpcd 249 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦))
2524necon3bd 2960 . . . . . . . . . 10 (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
267, 25syli 39 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
27 3simpc 1150 . . . . . . . . . . . 12 (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
28 cnpart 15289 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
2927, 28imbitrid 244 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3029impancom 451 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3226, 31syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3317, 32pm2.65d 196 . . . . . . 7 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ¬ ¬ 𝑥 = 𝑦)
3433notnotrd 133 . . . . . 6 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3534an4s 659 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3635ex 412 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
3736a1i 11 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦)))
3837ralrimivv 3206 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
39 oveq1 7455 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
4039eqeq1d 2742 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
41 fveq2 6920 . . . . 5 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
4241breq2d 5178 . . . 4 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
43 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
44 neleq1 3058 . . . . 5 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4543, 44syl 17 . . . 4 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4640, 42, 453anbi123d 1436 . . 3 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
4746rmo4 3752 . 2 (∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
4838, 47sylibr 234 1 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wnel 3052  wral 3067  ∃*wrmo 3387   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  ici 11186   · cmul 11189  cle 11325  -cneg 11521  2c2 12348  +crp 13057  cexp 14112  cre 15146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150
This theorem is referenced by:  resqreu  15301  sqrtneg  15316  sqreu  15409
  Copyright terms: Public domain W3C validator