MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Visualization version   GIF version

Theorem sqrmo 15136
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1215 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = 𝐴)
2 simprr1 1221 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦↑2) = 𝐴)
31, 2eqtr4d 2779 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = (𝑦↑2))
4 sqeqor 14120 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
54ad2ant2r 745 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
63, 5mpbid 231 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = 𝑦𝑥 = -𝑦))
76ord 862 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑥 = -𝑦))
8 3simpc 1150 . . . . . . . . . . 11 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦))
109breq2d 5117 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘-𝑦)))
11 oveq2 7365 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦))
12 neleq1 3054 . . . . . . . . . . . . 13 ((i · 𝑥) = (i · -𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1311, 12syl 17 . . . . . . . . . . . 12 (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1410, 13anbi12d 631 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
158, 14syl5ibcom 244 . . . . . . . . . 10 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
1615ad2antlr 725 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
177, 16syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
18 negeq 11393 . . . . . . . . . . . . . . 15 (𝑦 = 0 → -𝑦 = -0)
19 neg0 11447 . . . . . . . . . . . . . . 15 -0 = 0
2018, 19eqtrdi 2792 . . . . . . . . . . . . . 14 (𝑦 = 0 → -𝑦 = 0)
2120eqeq2d 2747 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 0))
22 eqeq2 2748 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2321, 22bitr4d 281 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 𝑦))
2423biimpcd 248 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦))
2524necon3bd 2957 . . . . . . . . . 10 (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
267, 25syli 39 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
27 3simpc 1150 . . . . . . . . . . . 12 (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
28 cnpart 15125 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
2927, 28imbitrid 243 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3029impancom 452 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3130adantl 482 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3226, 31syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3317, 32pm2.65d 195 . . . . . . 7 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ¬ ¬ 𝑥 = 𝑦)
3433notnotrd 133 . . . . . 6 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3534an4s 658 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3635ex 413 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
3736a1i 11 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦)))
3837ralrimivv 3195 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
39 oveq1 7364 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
4039eqeq1d 2738 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
41 fveq2 6842 . . . . 5 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
4241breq2d 5117 . . . 4 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
43 oveq2 7365 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
44 neleq1 3054 . . . . 5 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4543, 44syl 17 . . . 4 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4640, 42, 453anbi123d 1436 . . 3 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
4746rmo4 3688 . 2 (∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
4838, 47sylibr 233 1 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  wral 3064  ∃*wrmo 3352   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  ici 11053   · cmul 11056  cle 11190  -cneg 11386  2c2 12208  +crp 12915  cexp 13967  cre 14982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986
This theorem is referenced by:  resqreu  15137  sqrtneg  15152  sqreu  15245
  Copyright terms: Public domain W3C validator