Step | Hyp | Ref
| Expression |
1 | | simplr1 1213 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑥↑2) = 𝐴) |
2 | | simprr1 1219 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑦↑2) = 𝐴) |
3 | 1, 2 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑥↑2) = (𝑦↑2)) |
4 | | sqeqor 13860 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦 ∨ 𝑥 = -𝑦))) |
5 | 4 | ad2ant2r 743 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦 ∨ 𝑥 = -𝑦))) |
6 | 3, 5 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑥 = 𝑦 ∨ 𝑥 = -𝑦)) |
7 | 6 | ord 860 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (¬ 𝑥 = 𝑦 → 𝑥 = -𝑦)) |
8 | | 3simpc 1148 |
. . . . . . . . . . 11
⊢ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
→ (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉
ℝ+)) |
9 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦)) |
10 | 9 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤
(ℜ‘-𝑦))) |
11 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦)) |
12 | | neleq1 3053 |
. . . . . . . . . . . . 13
⊢ ((i
· 𝑥) = (i ·
-𝑦) → ((i ·
𝑥) ∉
ℝ+ ↔ (i · -𝑦) ∉
ℝ+)) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i
· -𝑦) ∉
ℝ+)) |
14 | 10, 13 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
15 | 8, 14 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
→ (𝑥 = -𝑦 → (0 ≤
(ℜ‘-𝑦) ∧ (i
· -𝑦) ∉
ℝ+))) |
16 | 15 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
17 | 7, 16 | syld 47 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
18 | | negeq 11143 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → -𝑦 = -0) |
19 | | neg0 11197 |
. . . . . . . . . . . . . . 15
⊢ -0 =
0 |
20 | 18, 19 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → -𝑦 = 0) |
21 | 20 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (𝑥 = -𝑦 ↔ 𝑥 = 0)) |
22 | | eqeq2 2750 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (𝑥 = 𝑦 ↔ 𝑥 = 0)) |
23 | 21, 22 | bitr4d 281 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → (𝑥 = -𝑦 ↔ 𝑥 = 𝑦)) |
24 | 23 | biimpcd 248 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦)) |
25 | 24 | necon3bd 2956 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦 → 𝑦 ≠ 0)) |
26 | 7, 25 | syli 39 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (¬ 𝑥 = 𝑦 → 𝑦 ≠ 0)) |
27 | | 3simpc 1148 |
. . . . . . . . . . . 12
⊢ (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
→ (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉
ℝ+)) |
28 | | cnpart 14879 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
29 | 27, 28 | syl5ib 243 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
→ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
30 | 29 | impancom 451 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
→ (𝑦 ≠ 0 →
¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤
(ℜ‘-𝑦) ∧ (i
· -𝑦) ∉
ℝ+))) |
32 | 26, 31 | syld 47 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉
ℝ+))) |
33 | 17, 32 | pm2.65d 195 |
. . . . . . 7
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → ¬ ¬ 𝑥 = 𝑦) |
34 | 33 | notnotrd 133 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
∧ (𝑦 ∈ ℂ
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → 𝑥 = 𝑦) |
35 | 34 | an4s 656 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) → 𝑥 = 𝑦) |
36 | 35 | ex 412 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
→ 𝑥 = 𝑦)) |
37 | 36 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
→ 𝑥 = 𝑦))) |
38 | 37 | ralrimivv 3113 |
. 2
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℂ
((((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
→ 𝑥 = 𝑦)) |
39 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) |
40 | 39 | eqeq1d 2740 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴)) |
41 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦)) |
42 | 41 | breq2d 5082 |
. . . 4
⊢ (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤
(ℜ‘𝑦))) |
43 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦)) |
44 | | neleq1 3053 |
. . . . 5
⊢ ((i
· 𝑥) = (i ·
𝑦) → ((i ·
𝑥) ∉
ℝ+ ↔ (i · 𝑦) ∉
ℝ+)) |
45 | 43, 44 | syl 17 |
. . . 4
⊢ (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i
· 𝑦) ∉
ℝ+)) |
46 | 40, 42, 45 | 3anbi123d 1434 |
. . 3
⊢ (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+))) |
47 | 46 | rmo4 3660 |
. 2
⊢
(∃*𝑥 ∈
ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)
∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑦) ∧ (i
· 𝑦) ∉
ℝ+)) → 𝑥 = 𝑦)) |
48 | 38, 47 | sylibr 233 |
1
⊢ (𝐴 ∈ ℂ →
∃*𝑥 ∈ ℂ
((𝑥↑2) = 𝐴 ∧ 0 ≤
(ℜ‘𝑥) ∧ (i
· 𝑥) ∉
ℝ+)) |