MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Visualization version   GIF version

Theorem sqrmo 15158
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1216 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = 𝐴)
2 simprr1 1222 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦↑2) = 𝐴)
31, 2eqtr4d 2767 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = (𝑦↑2))
4 sqeqor 14123 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
54ad2ant2r 747 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
63, 5mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = 𝑦𝑥 = -𝑦))
76ord 864 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑥 = -𝑦))
8 3simpc 1150 . . . . . . . . . . 11 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦))
109breq2d 5104 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘-𝑦)))
11 oveq2 7357 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦))
12 neleq1 3035 . . . . . . . . . . . . 13 ((i · 𝑥) = (i · -𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1311, 12syl 17 . . . . . . . . . . . 12 (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1410, 13anbi12d 632 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
158, 14syl5ibcom 245 . . . . . . . . . 10 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
1615ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
177, 16syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
18 negeq 11355 . . . . . . . . . . . . . . 15 (𝑦 = 0 → -𝑦 = -0)
19 neg0 11410 . . . . . . . . . . . . . . 15 -0 = 0
2018, 19eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑦 = 0 → -𝑦 = 0)
2120eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 0))
22 eqeq2 2741 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2321, 22bitr4d 282 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 𝑦))
2423biimpcd 249 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦))
2524necon3bd 2939 . . . . . . . . . 10 (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
267, 25syli 39 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
27 3simpc 1150 . . . . . . . . . . . 12 (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
28 cnpart 15147 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
2927, 28imbitrid 244 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3029impancom 451 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3226, 31syld 47 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3317, 32pm2.65d 196 . . . . . . 7 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ¬ ¬ 𝑥 = 𝑦)
3433notnotrd 133 . . . . . 6 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3534an4s 660 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3635ex 412 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
3736a1i 11 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦)))
3837ralrimivv 3170 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
39 oveq1 7356 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
4039eqeq1d 2731 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
41 fveq2 6822 . . . . 5 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
4241breq2d 5104 . . . 4 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
43 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
44 neleq1 3035 . . . . 5 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4543, 44syl 17 . . . 4 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4640, 42, 453anbi123d 1438 . . 3 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
4746rmo4 3690 . 2 (∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
4838, 47sylibr 234 1 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  ∃*wrmo 3342   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  ici 11011   · cmul 11014  cle 11150  -cneg 11348  2c2 12183  +crp 12893  cexp 13968  cre 15004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008
This theorem is referenced by:  resqreu  15159  sqrtneg  15174  sqreu  15268
  Copyright terms: Public domain W3C validator