![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
Ref | Expression |
---|---|
pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
Ref | Expression |
---|---|
pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5619 onssneli 6511 oalimcl 8616 rankcf 10846 prlem934 11102 supsrlem 11180 rpnnen1lem5 13046 rennim 15288 smu01lem 16531 opsrtoslem2 22103 cfinufil 23957 alexsub 24074 ostth3 27700 4cyclusnfrgr 30324 cvnref 32323 pconnconn 35199 untelirr 35670 dfon2lem4 35750 heiborlem10 37780 lindslinindsimp1 48186 |
Copyright terms: Public domain | W3C validator |