| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5530 onssneli 6418 oalimcl 8470 rankcf 10663 prlem934 10919 supsrlem 10997 rpnnen1lem5 12874 rennim 15141 smu01lem 16391 opsrtoslem2 21986 cfinufil 23838 alexsub 23955 ostth3 27571 4cyclusnfrgr 30264 cvnref 32263 pconnconn 35267 untelirr 35744 dfon2lem4 35820 heiborlem10 37860 mod2addne 47395 pgnioedg1 48139 pgnioedg2 48140 pgnioedg3 48141 pgnioedg4 48142 pgnioedg5 48143 lindslinindsimp1 48489 |
| Copyright terms: Public domain | W3C validator |