| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5572 onssneli 6470 oalimcl 8572 rankcf 10791 prlem934 11047 supsrlem 11125 rpnnen1lem5 12997 rennim 15258 smu01lem 16504 opsrtoslem2 22014 cfinufil 23866 alexsub 23983 ostth3 27601 4cyclusnfrgr 30273 cvnref 32272 pconnconn 35253 untelirr 35725 dfon2lem4 35804 heiborlem10 37844 lindslinindsimp1 48433 |
| Copyright terms: Public domain | W3C validator |