Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
Ref | Expression |
---|---|
pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
Ref | Expression |
---|---|
pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65d 195 pm2.01da 795 swopo 5505 onssneli 6361 oalimcl 8353 rankcf 10464 prlem934 10720 supsrlem 10798 rpnnen1lem5 12650 rennim 14878 smu01lem 16120 opsrtoslem2 21173 cfinufil 22987 alexsub 23104 ostth3 26691 4cyclusnfrgr 28557 cvnref 30554 pconnconn 33093 untelirr 33549 dfon2lem4 33668 heiborlem10 35905 lindslinindsimp1 45686 |
Copyright terms: Public domain | W3C validator |