Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
Ref | Expression |
---|---|
pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
Ref | Expression |
---|---|
pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65d 195 pm2.01da 796 swopo 5514 onssneli 6376 oalimcl 8391 rankcf 10533 prlem934 10789 supsrlem 10867 rpnnen1lem5 12721 rennim 14950 smu01lem 16192 opsrtoslem2 21263 cfinufil 23079 alexsub 23196 ostth3 26786 4cyclusnfrgr 28656 cvnref 30653 pconnconn 33193 untelirr 33649 dfon2lem4 33762 heiborlem10 35978 lindslinindsimp1 45798 |
Copyright terms: Public domain | W3C validator |