| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5540 onssneli 6431 oalimcl 8484 rankcf 10679 prlem934 10935 supsrlem 11013 rpnnen1lem5 12885 rennim 15153 smu01lem 16403 opsrtoslem2 22002 cfinufil 23863 alexsub 23980 ostth3 27596 4cyclusnfrgr 30293 cvnref 32292 pconnconn 35347 untelirr 35824 dfon2lem4 35900 heiborlem10 37933 mod2addne 47526 pgnioedg1 48270 pgnioedg2 48271 pgnioedg3 48272 pgnioedg4 48273 pgnioedg5 48274 lindslinindsimp1 48619 |
| Copyright terms: Public domain | W3C validator |