| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5560 onssneli 6453 oalimcl 8527 rankcf 10737 prlem934 10993 supsrlem 11071 rpnnen1lem5 12947 rennim 15212 smu01lem 16462 opsrtoslem2 21970 cfinufil 23822 alexsub 23939 ostth3 27556 4cyclusnfrgr 30228 cvnref 32227 pconnconn 35225 untelirr 35702 dfon2lem4 35781 heiborlem10 37821 mod2addne 47369 pgnioedg1 48102 pgnioedg2 48103 pgnioedg3 48104 pgnioedg4 48105 pgnioedg5 48106 lindslinindsimp1 48450 |
| Copyright terms: Public domain | W3C validator |