MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01d Structured version   Visualization version   GIF version

Theorem pm2.01d 190
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.)
Hypothesis
Ref Expression
pm2.01d.1 (𝜑 → (𝜓 → ¬ 𝜓))
Assertion
Ref Expression
pm2.01d (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01d
StepHypRef Expression
1 pm2.01d.1 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
2 id 22 . 2 𝜓 → ¬ 𝜓)
31, 2pm2.61d1 180 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65d  196  pm2.01da  798  swopo  5572  onssneli  6470  oalimcl  8572  rankcf  10791  prlem934  11047  supsrlem  11125  rpnnen1lem5  12997  rennim  15258  smu01lem  16504  opsrtoslem2  22014  cfinufil  23866  alexsub  23983  ostth3  27601  4cyclusnfrgr  30273  cvnref  32272  pconnconn  35253  untelirr  35725  dfon2lem4  35804  heiborlem10  37844  lindslinindsimp1  48433
  Copyright terms: Public domain W3C validator