| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5557 onssneli 6450 oalimcl 8524 rankcf 10730 prlem934 10986 supsrlem 11064 rpnnen1lem5 12940 rennim 15205 smu01lem 16455 opsrtoslem2 21963 cfinufil 23815 alexsub 23932 ostth3 27549 4cyclusnfrgr 30221 cvnref 32220 pconnconn 35218 untelirr 35695 dfon2lem4 35774 heiborlem10 37814 mod2addne 47365 pgnioedg1 48098 pgnioedg2 48099 pgnioedg3 48100 pgnioedg4 48101 pgnioedg5 48102 lindslinindsimp1 48446 |
| Copyright terms: Public domain | W3C validator |