|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) | 
| Ref | Expression | 
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | 
| Ref | Expression | 
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: pm2.65d 196 pm2.01da 799 swopo 5603 onssneli 6500 oalimcl 8598 rankcf 10817 prlem934 11073 supsrlem 11151 rpnnen1lem5 13023 rennim 15278 smu01lem 16522 opsrtoslem2 22080 cfinufil 23936 alexsub 24053 ostth3 27682 4cyclusnfrgr 30311 cvnref 32310 pconnconn 35236 untelirr 35708 dfon2lem4 35787 heiborlem10 37827 lindslinindsimp1 48374 | 
| Copyright terms: Public domain | W3C validator |