| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.01d | Structured version Visualization version GIF version | ||
| Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm2.01d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.01d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.01d.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | |
| 2 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 3 | 1, 2 | pm2.61d1 180 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65d 196 pm2.01da 798 swopo 5542 onssneli 6428 oalimcl 8485 rankcf 10690 prlem934 10946 supsrlem 11024 rpnnen1lem5 12900 rennim 15164 smu01lem 16414 opsrtoslem2 21979 cfinufil 23831 alexsub 23948 ostth3 27565 4cyclusnfrgr 30254 cvnref 32253 pconnconn 35206 untelirr 35683 dfon2lem4 35762 heiborlem10 37802 mod2addne 47352 pgnioedg1 48096 pgnioedg2 48097 pgnioedg3 48098 pgnioedg4 48099 pgnioedg5 48100 lindslinindsimp1 48446 |
| Copyright terms: Public domain | W3C validator |