HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmlnop0iALT Structured version   Visualization version   GIF version

Theorem nmlnop0iALT 31922
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nmlnop0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
nmlnop0iALT ((normop𝑇) = 0 ↔ 𝑇 = 0hop )

Proof of Theorem nmlnop0iALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 normcl 31052 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21recnd 11261 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
32adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ∈ ℂ)
4 norm-i 31056 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
5 fveq2 6875 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑇𝑥) = (𝑇‘0))
6 nmlnop0.1 . . . . . . . . . . . . . . . . 17 𝑇 ∈ LinOp
76lnop0i 31897 . . . . . . . . . . . . . . . 16 (𝑇‘0) = 0
85, 7eqtrdi 2786 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑇𝑥) = 0)
94, 8biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((norm𝑥) = 0 → (𝑇𝑥) = 0))
109necon3d 2953 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → (norm𝑥) ≠ 0))
1110imp 406 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ≠ 0)
123, 11recne0d 12009 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ≠ 0)
13 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ≠ 0)
143, 11reccld 12008 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ∈ ℂ)
156lnopfi 31896 . . . . . . . . . . . . . . . 16 𝑇: ℋ⟶ ℋ
1615ffvelcdmi 7072 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
1716adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ∈ ℋ)
18 hvmul0or 30952 . . . . . . . . . . . . . 14 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
1914, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
2019necon3abid 2968 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
21 neanior 3025 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0) ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0))
2220, 21bitr4di 289 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0)))
2312, 13, 22mpbir2and 713 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0)
24 hvmulcl 30940 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
2514, 17, 24syl2anc 584 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
26 normgt0 31054 . . . . . . . . . . 11 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2725, 26syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2823, 27mpbid 232 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
2928ex 412 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
3029adantl 481 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
31 nmopsetretHIL 31791 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ)
3215, 31ax-mp 5 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ
33 ressxr 11277 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3968 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ*
35 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 𝑥 ∈ ℋ)
36 hvmulcl 30940 . . . . . . . . . . . . . . 15 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
3714, 35, 36syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
388necon3i 2964 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 0𝑥 ≠ 0)
39 norm1 31176 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
4038, 39sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
41 1re 11233 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4240, 41eqeltrdi 2842 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ)
43 eqle 11335 . . . . . . . . . . . . . . 15 (((norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
4442, 40, 43syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
456lnopmuli 31899 . . . . . . . . . . . . . . . . 17 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4614, 35, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4746eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
4847fveq2d 6879 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
49 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm𝑧) = (norm‘((1 / (norm𝑥)) · 𝑥)))
5049breq1d 5129 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑧) ≤ 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1))
51 fveq2 6875 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (𝑇𝑧) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
5251fveq2d 6879 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm‘(𝑇𝑧)) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
5352eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥)))))
5450, 53anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))) ↔ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))))
5554rspcev 3601 . . . . . . . . . . . . . 14 ((((1 / (norm𝑥)) · 𝑥) ∈ ℋ ∧ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5637, 44, 48, 55syl12anc 836 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
57 fvex 6888 . . . . . . . . . . . . . 14 (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ V
58 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (𝑦 = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5958anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6059rexbidv 3164 . . . . . . . . . . . . . 14 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6157, 60elab 3658 . . . . . . . . . . . . 13 ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
6256, 61sylibr 234 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))})
63 supxrub 13338 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ* ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6434, 62, 63sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6564adantll 714 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
66 nmopval 31783 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6715, 66ax-mp 5 . . . . . . . . . . . . 13 (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < )
6867eqeq1i 2740 . . . . . . . . . . . 12 ((normop𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
6968biimpi 216 . . . . . . . . . . 11 ((normop𝑇) = 0 → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7069ad2antrr 726 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7165, 70breqtrd 5145 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0)
72 normcl 31052 . . . . . . . . . . . 12 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
7325, 72syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
74 0re 11235 . . . . . . . . . . 11 0 ∈ ℝ
75 lenlt 11311 . . . . . . . . . . 11 (((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7673, 74, 75sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7776adantll 714 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7871, 77mpbid 232 . . . . . . . 8 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
7978ex 412 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
8030, 79pm2.65d 196 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ¬ (𝑇𝑥) ≠ 0)
81 nne 2936 . . . . . 6 (¬ (𝑇𝑥) ≠ 0 ↔ (𝑇𝑥) = 0)
8280, 81sylib 218 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = 0)
83 ho0val 31677 . . . . . 6 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
8483adantl 481 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ( 0hop𝑥) = 0)
8582, 84eqtr4d 2773 . . . 4 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = ( 0hop𝑥))
8685ralrimiva 3132 . . 3 ((normop𝑇) = 0 → ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
87 ffn 6705 . . . . 5 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
8815, 87ax-mp 5 . . . 4 𝑇 Fn ℋ
89 ho0f 31678 . . . . 5 0hop : ℋ⟶ ℋ
90 ffn 6705 . . . . 5 ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ)
9189, 90ax-mp 5 . . . 4 0hop Fn ℋ
92 eqfnfv 7020 . . . 4 ((𝑇 Fn ℋ ∧ 0hop Fn ℋ) → (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥)))
9388, 91, 92mp2an 692 . . 3 (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
9486, 93sylibr 234 . 2 ((normop𝑇) = 0 → 𝑇 = 0hop )
95 fveq2 6875 . . 3 (𝑇 = 0hop → (normop𝑇) = (normop‘ 0hop ))
96 nmop0 31913 . . 3 (normop‘ 0hop ) = 0
9795, 96eqtrdi 2786 . 2 (𝑇 = 0hop → (normop𝑇) = 0)
9894, 97impbii 209 1 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  wss 3926   class class class wbr 5119   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128  *cxr 11266   < clt 11267  cle 11268   / cdiv 11892  chba 30846   · csm 30848  normcno 30850  0c0v 30851   0hop ch0o 30870  normopcnop 30872  LinOpclo 30874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-cn 23163  df-cnp 23164  df-lm 23165  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cfil 25205  df-cau 25206  df-cmet 25207  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-shs 31235  df-pjh 31322  df-h0op 31675  df-nmop 31766  df-lnop 31768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator