HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmlnop0iALT Structured version   Visualization version   GIF version

Theorem nmlnop0iALT 29310
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nmlnop0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
nmlnop0iALT ((normop𝑇) = 0 ↔ 𝑇 = 0hop )

Proof of Theorem nmlnop0iALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 normcl 28438 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21recnd 10322 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
32adantr 472 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ∈ ℂ)
4 norm-i 28442 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
5 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑇𝑥) = (𝑇‘0))
6 nmlnop0.1 . . . . . . . . . . . . . . . . 17 𝑇 ∈ LinOp
76lnop0i 29285 . . . . . . . . . . . . . . . 16 (𝑇‘0) = 0
85, 7syl6eq 2815 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑇𝑥) = 0)
94, 8syl6bi 244 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((norm𝑥) = 0 → (𝑇𝑥) = 0))
109necon3d 2958 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → (norm𝑥) ≠ 0))
1110imp 395 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ≠ 0)
123, 11recne0d 11049 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ≠ 0)
13 simpr 477 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ≠ 0)
143, 11reccld 11048 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ∈ ℂ)
156lnopfi 29284 . . . . . . . . . . . . . . . 16 𝑇: ℋ⟶ ℋ
1615ffvelrni 6548 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
1716adantr 472 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ∈ ℋ)
18 hvmul0or 28338 . . . . . . . . . . . . . 14 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
1914, 17, 18syl2anc 579 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
2019necon3abid 2973 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
21 neanior 3029 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0) ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0))
2220, 21syl6bbr 280 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0)))
2312, 13, 22mpbir2and 704 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0)
24 hvmulcl 28326 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
2514, 17, 24syl2anc 579 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
26 normgt0 28440 . . . . . . . . . . 11 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2725, 26syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2823, 27mpbid 223 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
2928ex 401 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
3029adantl 473 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
31 nmopsetretHIL 29179 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ)
3215, 31ax-mp 5 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ
33 ressxr 10337 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3770 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ*
35 simpl 474 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 𝑥 ∈ ℋ)
36 hvmulcl 28326 . . . . . . . . . . . . . . 15 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
3714, 35, 36syl2anc 579 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
388necon3i 2969 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 0𝑥 ≠ 0)
39 norm1 28562 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
4038, 39sylan2 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
41 1re 10293 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4240, 41syl6eqel 2852 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ)
43 eqle 10393 . . . . . . . . . . . . . . 15 (((norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
4442, 40, 43syl2anc 579 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
456lnopmuli 29287 . . . . . . . . . . . . . . . . 17 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4614, 35, 45syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4746eqcomd 2771 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
4847fveq2d 6379 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
49 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm𝑧) = (norm‘((1 / (norm𝑥)) · 𝑥)))
5049breq1d 4819 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑧) ≤ 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1))
51 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (𝑇𝑧) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
5251fveq2d 6379 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm‘(𝑇𝑧)) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
5352eqeq2d 2775 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥)))))
5450, 53anbi12d 624 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))) ↔ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))))
5554rspcev 3461 . . . . . . . . . . . . . 14 ((((1 / (norm𝑥)) · 𝑥) ∈ ℋ ∧ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5637, 44, 48, 55syl12anc 865 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
57 fvex 6388 . . . . . . . . . . . . . 14 (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ V
58 eqeq1 2769 . . . . . . . . . . . . . . . 16 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (𝑦 = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5958anbi2d 622 . . . . . . . . . . . . . . 15 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6059rexbidv 3199 . . . . . . . . . . . . . 14 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6157, 60elab 3504 . . . . . . . . . . . . 13 ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
6256, 61sylibr 225 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))})
63 supxrub 12356 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ* ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6434, 62, 63sylancr 581 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6564adantll 705 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
66 nmopval 29171 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6715, 66ax-mp 5 . . . . . . . . . . . . 13 (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < )
6867eqeq1i 2770 . . . . . . . . . . . 12 ((normop𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
6968biimpi 207 . . . . . . . . . . 11 ((normop𝑇) = 0 → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7069ad2antrr 717 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7165, 70breqtrd 4835 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0)
72 normcl 28438 . . . . . . . . . . . 12 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
7325, 72syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
74 0re 10295 . . . . . . . . . . 11 0 ∈ ℝ
75 lenlt 10370 . . . . . . . . . . 11 (((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7673, 74, 75sylancl 580 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7776adantll 705 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7871, 77mpbid 223 . . . . . . . 8 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
7978ex 401 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
8030, 79pm2.65d 187 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ¬ (𝑇𝑥) ≠ 0)
81 nne 2941 . . . . . 6 (¬ (𝑇𝑥) ≠ 0 ↔ (𝑇𝑥) = 0)
8280, 81sylib 209 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = 0)
83 ho0val 29065 . . . . . 6 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
8483adantl 473 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ( 0hop𝑥) = 0)
8582, 84eqtr4d 2802 . . . 4 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = ( 0hop𝑥))
8685ralrimiva 3113 . . 3 ((normop𝑇) = 0 → ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
87 ffn 6223 . . . . 5 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
8815, 87ax-mp 5 . . . 4 𝑇 Fn ℋ
89 ho0f 29066 . . . . 5 0hop : ℋ⟶ ℋ
90 ffn 6223 . . . . 5 ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ)
9189, 90ax-mp 5 . . . 4 0hop Fn ℋ
92 eqfnfv 6501 . . . 4 ((𝑇 Fn ℋ ∧ 0hop Fn ℋ) → (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥)))
9388, 91, 92mp2an 683 . . 3 (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
9486, 93sylibr 225 . 2 ((normop𝑇) = 0 → 𝑇 = 0hop )
95 fveq2 6375 . . 3 (𝑇 = 0hop → (normop𝑇) = (normop‘ 0hop ))
96 nmop0 29301 . . 3 (normop‘ 0hop ) = 0
9795, 96syl6eq 2815 . 2 (𝑇 = 0hop → (normop𝑇) = 0)
9894, 97impbii 200 1 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  wss 3732   class class class wbr 4809   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  cc 10187  cr 10188  0cc0 10189  1c1 10190  *cxr 10327   < clt 10328  cle 10329   / cdiv 10938  chba 28232   · csm 28234  normcno 28236  0c0v 28237   0hop ch0o 28256  normopcnop 28258  LinOpclo 28260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269  ax-hilex 28312  ax-hfvadd 28313  ax-hvcom 28314  ax-hvass 28315  ax-hv0cl 28316  ax-hvaddid 28317  ax-hfvmul 28318  ax-hvmulid 28319  ax-hvmulass 28320  ax-hvdistr1 28321  ax-hvdistr2 28322  ax-hvmul0 28323  ax-hfi 28392  ax-his1 28395  ax-his2 28396  ax-his3 28397  ax-his4 28398  ax-hcompl 28515
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-cn 21311  df-cnp 21312  df-lm 21313  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cfil 23332  df-cau 23333  df-cmet 23334  df-grpo 27804  df-gid 27805  df-ginv 27806  df-gdiv 27807  df-ablo 27856  df-vc 27870  df-nv 27903  df-va 27906  df-ba 27907  df-sm 27908  df-0v 27909  df-vs 27910  df-nmcv 27911  df-ims 27912  df-dip 28012  df-ssp 28033  df-ph 28124  df-cbn 28175  df-hnorm 28281  df-hba 28282  df-hvsub 28284  df-hlim 28285  df-hcau 28286  df-sh 28520  df-ch 28534  df-oc 28565  df-ch0 28566  df-shs 28623  df-pjh 28710  df-h0op 29063  df-nmop 29154  df-lnop 29156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator