HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmlnop0iALT Structured version   Visualization version   GIF version

Theorem nmlnop0iALT 29943
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nmlnop0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
nmlnop0iALT ((normop𝑇) = 0 ↔ 𝑇 = 0hop )

Proof of Theorem nmlnop0iALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 normcl 29073 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21recnd 10760 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
32adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ∈ ℂ)
4 norm-i 29077 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
5 fveq2 6687 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑇𝑥) = (𝑇‘0))
6 nmlnop0.1 . . . . . . . . . . . . . . . . 17 𝑇 ∈ LinOp
76lnop0i 29918 . . . . . . . . . . . . . . . 16 (𝑇‘0) = 0
85, 7eqtrdi 2790 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑇𝑥) = 0)
94, 8syl6bi 256 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((norm𝑥) = 0 → (𝑇𝑥) = 0))
109necon3d 2956 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → (norm𝑥) ≠ 0))
1110imp 410 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ≠ 0)
123, 11recne0d 11501 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ≠ 0)
13 simpr 488 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ≠ 0)
143, 11reccld 11500 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ∈ ℂ)
156lnopfi 29917 . . . . . . . . . . . . . . . 16 𝑇: ℋ⟶ ℋ
1615ffvelrni 6873 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
1716adantr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ∈ ℋ)
18 hvmul0or 28973 . . . . . . . . . . . . . 14 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
1914, 17, 18syl2anc 587 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
2019necon3abid 2971 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
21 neanior 3027 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0) ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0))
2220, 21bitr4di 292 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0)))
2312, 13, 22mpbir2and 713 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0)
24 hvmulcl 28961 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
2514, 17, 24syl2anc 587 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
26 normgt0 29075 . . . . . . . . . . 11 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2725, 26syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2823, 27mpbid 235 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
2928ex 416 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
3029adantl 485 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
31 nmopsetretHIL 29812 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ)
3215, 31ax-mp 5 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ
33 ressxr 10776 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3896 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ*
35 simpl 486 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 𝑥 ∈ ℋ)
36 hvmulcl 28961 . . . . . . . . . . . . . . 15 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
3714, 35, 36syl2anc 587 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
388necon3i 2967 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 0𝑥 ≠ 0)
39 norm1 29197 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
4038, 39sylan2 596 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
41 1re 10732 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4240, 41eqeltrdi 2842 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ)
43 eqle 10833 . . . . . . . . . . . . . . 15 (((norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
4442, 40, 43syl2anc 587 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
456lnopmuli 29920 . . . . . . . . . . . . . . . . 17 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4614, 35, 45syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4746eqcomd 2745 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
4847fveq2d 6691 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
49 fveq2 6687 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm𝑧) = (norm‘((1 / (norm𝑥)) · 𝑥)))
5049breq1d 5050 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑧) ≤ 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1))
51 fveq2 6687 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (𝑇𝑧) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
5251fveq2d 6691 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm‘(𝑇𝑧)) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
5352eqeq2d 2750 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥)))))
5450, 53anbi12d 634 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))) ↔ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))))
5554rspcev 3529 . . . . . . . . . . . . . 14 ((((1 / (norm𝑥)) · 𝑥) ∈ ℋ ∧ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5637, 44, 48, 55syl12anc 836 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
57 fvex 6700 . . . . . . . . . . . . . 14 (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ V
58 eqeq1 2743 . . . . . . . . . . . . . . . 16 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (𝑦 = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5958anbi2d 632 . . . . . . . . . . . . . . 15 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6059rexbidv 3208 . . . . . . . . . . . . . 14 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6157, 60elab 3578 . . . . . . . . . . . . 13 ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
6256, 61sylibr 237 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))})
63 supxrub 12813 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ* ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6434, 62, 63sylancr 590 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6564adantll 714 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
66 nmopval 29804 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6715, 66ax-mp 5 . . . . . . . . . . . . 13 (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < )
6867eqeq1i 2744 . . . . . . . . . . . 12 ((normop𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
6968biimpi 219 . . . . . . . . . . 11 ((normop𝑇) = 0 → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7069ad2antrr 726 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7165, 70breqtrd 5066 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0)
72 normcl 29073 . . . . . . . . . . . 12 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
7325, 72syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
74 0re 10734 . . . . . . . . . . 11 0 ∈ ℝ
75 lenlt 10810 . . . . . . . . . . 11 (((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7673, 74, 75sylancl 589 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7776adantll 714 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7871, 77mpbid 235 . . . . . . . 8 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
7978ex 416 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
8030, 79pm2.65d 199 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ¬ (𝑇𝑥) ≠ 0)
81 nne 2939 . . . . . 6 (¬ (𝑇𝑥) ≠ 0 ↔ (𝑇𝑥) = 0)
8280, 81sylib 221 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = 0)
83 ho0val 29698 . . . . . 6 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
8483adantl 485 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ( 0hop𝑥) = 0)
8582, 84eqtr4d 2777 . . . 4 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = ( 0hop𝑥))
8685ralrimiva 3097 . . 3 ((normop𝑇) = 0 → ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
87 ffn 6515 . . . . 5 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
8815, 87ax-mp 5 . . . 4 𝑇 Fn ℋ
89 ho0f 29699 . . . . 5 0hop : ℋ⟶ ℋ
90 ffn 6515 . . . . 5 ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ)
9189, 90ax-mp 5 . . . 4 0hop Fn ℋ
92 eqfnfv 6822 . . . 4 ((𝑇 Fn ℋ ∧ 0hop Fn ℋ) → (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥)))
9388, 91, 92mp2an 692 . . 3 (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
9486, 93sylibr 237 . 2 ((normop𝑇) = 0 → 𝑇 = 0hop )
95 fveq2 6687 . . 3 (𝑇 = 0hop → (normop𝑇) = (normop‘ 0hop ))
96 nmop0 29934 . . 3 (normop‘ 0hop ) = 0
9795, 96eqtrdi 2790 . 2 (𝑇 = 0hop → (normop𝑇) = 0)
9894, 97impbii 212 1 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  {cab 2717  wne 2935  wral 3054  wrex 3055  wss 3853   class class class wbr 5040   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7183  supcsup 8990  cc 10626  cr 10627  0cc0 10628  1c1 10629  *cxr 10765   < clt 10766  cle 10767   / cdiv 11388  chba 28867   · csm 28869  normcno 28871  0c0v 28872   0hop ch0o 28891  normopcnop 28893  LinOpclo 28895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-inf2 9190  ax-cc 9948  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706  ax-addf 10707  ax-mulf 10708  ax-hilex 28947  ax-hfvadd 28948  ax-hvcom 28949  ax-hvass 28950  ax-hv0cl 28951  ax-hvaddid 28952  ax-hfvmul 28953  ax-hvmulid 28954  ax-hvmulass 28955  ax-hvdistr1 28956  ax-hvdistr2 28957  ax-hvmul0 28958  ax-hfi 29027  ax-his1 29030  ax-his2 29031  ax-his3 29032  ax-his4 29033  ax-hcompl 29150
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-of 7438  df-om 7613  df-1st 7727  df-2nd 7728  df-supp 7870  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-2o 8145  df-oadd 8148  df-omul 8149  df-er 8333  df-map 8452  df-pm 8453  df-ixp 8521  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-fsupp 8920  df-fi 8961  df-sup 8992  df-inf 8993  df-oi 9060  df-card 9454  df-acn 9457  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-q 12444  df-rp 12486  df-xneg 12603  df-xadd 12604  df-xmul 12605  df-ioo 12838  df-ico 12840  df-icc 12841  df-fz 12995  df-fzo 13138  df-fl 13266  df-seq 13474  df-exp 13535  df-hash 13796  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-clim 14948  df-rlim 14949  df-sum 15149  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-ress 16607  df-plusg 16694  df-mulr 16695  df-starv 16696  df-sca 16697  df-vsca 16698  df-ip 16699  df-tset 16700  df-ple 16701  df-ds 16703  df-unif 16704  df-hom 16705  df-cco 16706  df-rest 16812  df-topn 16813  df-0g 16831  df-gsum 16832  df-topgen 16833  df-pt 16834  df-prds 16837  df-xrs 16891  df-qtop 16896  df-imas 16897  df-xps 16899  df-mre 16973  df-mrc 16974  df-acs 16976  df-mgm 17981  df-sgrp 18030  df-mnd 18041  df-submnd 18086  df-mulg 18356  df-cntz 18578  df-cmn 19039  df-psmet 20222  df-xmet 20223  df-met 20224  df-bl 20225  df-mopn 20226  df-fbas 20227  df-fg 20228  df-cnfld 20231  df-top 21658  df-topon 21675  df-topsp 21697  df-bases 21710  df-cld 21783  df-ntr 21784  df-cls 21785  df-nei 21862  df-cn 21991  df-cnp 21992  df-lm 21993  df-haus 22079  df-tx 22326  df-hmeo 22519  df-fil 22610  df-fm 22702  df-flim 22703  df-flf 22704  df-xms 23086  df-ms 23087  df-tms 23088  df-cfil 24020  df-cau 24021  df-cmet 24022  df-grpo 28441  df-gid 28442  df-ginv 28443  df-gdiv 28444  df-ablo 28493  df-vc 28507  df-nv 28540  df-va 28543  df-ba 28544  df-sm 28545  df-0v 28546  df-vs 28547  df-nmcv 28548  df-ims 28549  df-dip 28649  df-ssp 28670  df-ph 28761  df-cbn 28811  df-hnorm 28916  df-hba 28917  df-hvsub 28919  df-hlim 28920  df-hcau 28921  df-sh 29155  df-ch 29169  df-oc 29200  df-ch0 29201  df-shs 29256  df-pjh 29343  df-h0op 29696  df-nmop 29787  df-lnop 29789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator