HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmlnop0iALT Structured version   Visualization version   GIF version

Theorem nmlnop0iALT 31897
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nmlnop0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
nmlnop0iALT ((normop𝑇) = 0 ↔ 𝑇 = 0hop )

Proof of Theorem nmlnop0iALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 normcl 31027 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21recnd 11178 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
32adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ∈ ℂ)
4 norm-i 31031 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
5 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑇𝑥) = (𝑇‘0))
6 nmlnop0.1 . . . . . . . . . . . . . . . . 17 𝑇 ∈ LinOp
76lnop0i 31872 . . . . . . . . . . . . . . . 16 (𝑇‘0) = 0
85, 7eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑇𝑥) = 0)
94, 8biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((norm𝑥) = 0 → (𝑇𝑥) = 0))
109necon3d 2946 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → (norm𝑥) ≠ 0))
1110imp 406 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm𝑥) ≠ 0)
123, 11recne0d 11928 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ≠ 0)
13 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ≠ 0)
143, 11reccld 11927 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (1 / (norm𝑥)) ∈ ℂ)
156lnopfi 31871 . . . . . . . . . . . . . . . 16 𝑇: ℋ⟶ ℋ
1615ffvelcdmi 7037 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
1716adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇𝑥) ∈ ℋ)
18 hvmul0or 30927 . . . . . . . . . . . . . 14 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
1914, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) = 0 ↔ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
2019necon3abid 2961 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0)))
21 neanior 3018 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0) ↔ ¬ ((1 / (norm𝑥)) = 0 ∨ (𝑇𝑥) = 0))
2220, 21bitr4di 289 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ ((1 / (norm𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 0)))
2312, 13, 22mpbir2and 713 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0)
24 hvmulcl 30915 . . . . . . . . . . . 12 (((1 / (norm𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
2514, 17, 24syl2anc 584 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ)
26 normgt0 31029 . . . . . . . . . . 11 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2725, 26syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (((1 / (norm𝑥)) · (𝑇𝑥)) ≠ 0 ↔ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
2823, 27mpbid 232 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
2928ex 412 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
3029adantl 481 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
31 nmopsetretHIL 31766 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ)
3215, 31ax-mp 5 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ
33 ressxr 11194 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3953 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ*
35 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → 𝑥 ∈ ℋ)
36 hvmulcl 30915 . . . . . . . . . . . . . . 15 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
3714, 35, 36syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · 𝑥) ∈ ℋ)
388necon3i 2957 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 0𝑥 ≠ 0)
39 norm1 31151 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
4038, 39sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
41 1re 11150 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
4240, 41eqeltrdi 2836 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ)
43 eqle 11252 . . . . . . . . . . . . . . 15 (((norm‘((1 / (norm𝑥)) · 𝑥)) ∈ ℝ ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
4442, 40, 43syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1)
456lnopmuli 31874 . . . . . . . . . . . . . . . . 17 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4614, 35, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (𝑇‘((1 / (norm𝑥)) · 𝑥)) = ((1 / (norm𝑥)) · (𝑇𝑥)))
4746eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((1 / (norm𝑥)) · (𝑇𝑥)) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
4847fveq2d 6844 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
49 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm𝑧) = (norm‘((1 / (norm𝑥)) · 𝑥)))
5049breq1d 5112 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑧) ≤ 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1))
51 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (𝑇𝑧) = (𝑇‘((1 / (norm𝑥)) · 𝑥)))
5251fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (norm‘(𝑇𝑧)) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))
5352eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥)))))
5450, 53anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (norm𝑥)) · 𝑥) → (((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))) ↔ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))))
5554rspcev 3585 . . . . . . . . . . . . . 14 ((((1 / (norm𝑥)) · 𝑥) ∈ ℋ ∧ ((norm‘((1 / (norm𝑥)) · 𝑥)) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇‘((1 / (norm𝑥)) · 𝑥))))) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5637, 44, 48, 55syl12anc 836 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
57 fvex 6853 . . . . . . . . . . . . . 14 (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ V
58 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (𝑦 = (norm‘(𝑇𝑧)) ↔ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
5958anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6059rexbidv 3157 . . . . . . . . . . . . . 14 (𝑦 = (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) → (∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧))) ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧)))))
6157, 60elab 3643 . . . . . . . . . . . . 13 ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ↔ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) = (norm‘(𝑇𝑧))))
6256, 61sylibr 234 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))})
63 supxrub 13260 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))} ⊆ ℝ* ∧ (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6434, 62, 63sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6564adantll 714 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
66 nmopval 31758 . . . . . . . . . . . . . 14 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ))
6715, 66ax-mp 5 . . . . . . . . . . . . 13 (normop𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < )
6867eqeq1i 2734 . . . . . . . . . . . 12 ((normop𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
6968biimpi 216 . . . . . . . . . . 11 ((normop𝑇) = 0 → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7069ad2antrr 726 . . . . . . . . . 10 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → sup({𝑦 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑦 = (norm‘(𝑇𝑧)))}, ℝ*, < ) = 0)
7165, 70breqtrd 5128 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0)
72 normcl 31027 . . . . . . . . . . . 12 (((1 / (norm𝑥)) · (𝑇𝑥)) ∈ ℋ → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
7325, 72syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → (norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ)
74 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
75 lenlt 11228 . . . . . . . . . . 11 (((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7673, 74, 75sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7776adantll 714 . . . . . . . . 9 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ((norm‘((1 / (norm𝑥)) · (𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
7871, 77mpbid 232 . . . . . . . 8 ((((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇𝑥) ≠ 0) → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥))))
7978ex 412 . . . . . . 7 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ≠ 0 → ¬ 0 < (norm‘((1 / (norm𝑥)) · (𝑇𝑥)))))
8030, 79pm2.65d 196 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ¬ (𝑇𝑥) ≠ 0)
81 nne 2929 . . . . . 6 (¬ (𝑇𝑥) ≠ 0 ↔ (𝑇𝑥) = 0)
8280, 81sylib 218 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = 0)
83 ho0val 31652 . . . . . 6 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
8483adantl 481 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ( 0hop𝑥) = 0)
8582, 84eqtr4d 2767 . . . 4 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) = ( 0hop𝑥))
8685ralrimiva 3125 . . 3 ((normop𝑇) = 0 → ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
87 ffn 6670 . . . . 5 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
8815, 87ax-mp 5 . . . 4 𝑇 Fn ℋ
89 ho0f 31653 . . . . 5 0hop : ℋ⟶ ℋ
90 ffn 6670 . . . . 5 ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ)
9189, 90ax-mp 5 . . . 4 0hop Fn ℋ
92 eqfnfv 6985 . . . 4 ((𝑇 Fn ℋ ∧ 0hop Fn ℋ) → (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥)))
9388, 91, 92mp2an 692 . . 3 (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ( 0hop𝑥))
9486, 93sylibr 234 . 2 ((normop𝑇) = 0 → 𝑇 = 0hop )
95 fveq2 6840 . . 3 (𝑇 = 0hop → (normop𝑇) = (normop‘ 0hop ))
96 nmop0 31888 . . 3 (normop‘ 0hop ) = 0
9795, 96eqtrdi 2780 . 2 (𝑇 = 0hop → (normop𝑇) = 0)
9894, 97impbii 209 1 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3911   class class class wbr 5102   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  chba 30821   · csm 30823  normcno 30825  0c0v 30826   0hop ch0o 30845  normopcnop 30847  LinOpclo 30849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-lm 23092  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-pjh 31297  df-h0op 31650  df-nmop 31741  df-lnop 31743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator