| Step | Hyp | Ref
| Expression |
| 1 | | normcl 31144 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) |
| 2 | 1 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℂ) |
| 3 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘𝑥) ∈ ℂ) |
| 4 | | norm-i 31148 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) |
| 5 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0ℎ →
(𝑇‘𝑥) = (𝑇‘0ℎ)) |
| 6 | | nmlnop0.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 ∈ LinOp |
| 7 | 6 | lnop0i 31989 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇‘0ℎ) =
0ℎ |
| 8 | 5, 7 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0ℎ →
(𝑇‘𝑥) = 0ℎ) |
| 9 | 4, 8 | biimtrdi 253 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) = 0 → (𝑇‘𝑥) = 0ℎ)) |
| 10 | 9 | necon3d 2961 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) ≠ 0ℎ →
(normℎ‘𝑥) ≠ 0)) |
| 11 | 10 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘𝑥) ≠ 0) |
| 12 | 3, 11 | recne0d 12037 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (1 /
(normℎ‘𝑥)) ≠ 0) |
| 13 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (𝑇‘𝑥) ≠ 0ℎ) |
| 14 | 3, 11 | reccld 12036 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (1 /
(normℎ‘𝑥)) ∈ ℂ) |
| 15 | 6 | lnopfi 31988 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇: ℋ⟶
ℋ |
| 16 | 15 | ffvelcdmi 7103 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (𝑇‘𝑥) ∈ ℋ) |
| 18 | | hvmul0or 31044 |
. . . . . . . . . . . . . 14
⊢ (((1 /
(normℎ‘𝑥)) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) = 0ℎ ↔ ((1 /
(normℎ‘𝑥)) = 0 ∨ (𝑇‘𝑥) = 0ℎ))) |
| 19 | 14, 17, 18 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) = 0ℎ ↔ ((1 /
(normℎ‘𝑥)) = 0 ∨ (𝑇‘𝑥) = 0ℎ))) |
| 20 | 19 | necon3abid 2977 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ≠ 0ℎ ↔ ¬ ((1
/ (normℎ‘𝑥)) = 0 ∨ (𝑇‘𝑥) = 0ℎ))) |
| 21 | | neanior 3035 |
. . . . . . . . . . . 12
⊢ (((1 /
(normℎ‘𝑥)) ≠ 0 ∧ (𝑇‘𝑥) ≠ 0ℎ) ↔ ¬ ((1
/ (normℎ‘𝑥)) = 0 ∨ (𝑇‘𝑥) = 0ℎ)) |
| 22 | 20, 21 | bitr4di 289 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ≠ 0ℎ ↔ ((1 /
(normℎ‘𝑥)) ≠ 0 ∧ (𝑇‘𝑥) ≠
0ℎ))) |
| 23 | 12, 13, 22 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ≠
0ℎ) |
| 24 | | hvmulcl 31032 |
. . . . . . . . . . . 12
⊢ (((1 /
(normℎ‘𝑥)) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 25 | 14, 17, 24 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 26 | | normgt0 31146 |
. . . . . . . . . . 11
⊢ (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ∈ ℋ → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ≠ 0ℎ ↔ 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ≠ 0ℎ ↔ 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 28 | 23, 27 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥)))) |
| 29 | 28 | ex 412 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) ≠ 0ℎ → 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 30 | 29 | adantl 481 |
. . . . . . 7
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ≠ 0ℎ → 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 31 | | nmopsetretHIL 31883 |
. . . . . . . . . . . . . 14
⊢ (𝑇: ℋ⟶ ℋ →
{𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))} ⊆ ℝ) |
| 32 | 15, 31 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))} ⊆ ℝ |
| 33 | | ressxr 11305 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ* |
| 34 | 32, 33 | sstri 3993 |
. . . . . . . . . . . 12
⊢ {𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))} ⊆
ℝ* |
| 35 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → 𝑥 ∈
ℋ) |
| 36 | | hvmulcl 31032 |
. . . . . . . . . . . . . . 15
⊢ (((1 /
(normℎ‘𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) ∈
ℋ) |
| 37 | 14, 35, 36 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) ∈
ℋ) |
| 38 | 8 | necon3i 2973 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇‘𝑥) ≠ 0ℎ → 𝑥 ≠
0ℎ) |
| 39 | | norm1 31268 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)) = 1) |
| 40 | 38, 39 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) = 1) |
| 41 | | 1re 11261 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
| 42 | 40, 41 | eqeltrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ∈ ℝ) |
| 43 | | eqle 11363 |
. . . . . . . . . . . . . . 15
⊢
(((normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) = 1) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ≤ 1) |
| 44 | 42, 40, 43 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ≤ 1) |
| 45 | 6 | lnopmuli 31991 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 /
(normℎ‘𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)) = ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) |
| 46 | 14, 35, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → (𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)) = ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) |
| 47 | 46 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) → ((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) = (𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥))) |
| 48 | 47 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)))) |
| 49 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) →
(normℎ‘𝑧) = (normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥))) |
| 50 | 49 | breq1d 5153 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) →
((normℎ‘𝑧) ≤ 1 ↔
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ≤ 1)) |
| 51 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) → (𝑇‘𝑧) = (𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥))) |
| 52 | 51 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) →
(normℎ‘(𝑇‘𝑧)) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)))) |
| 53 | 52 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) →
((normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧)) ↔ (normℎ‘((1
/ (normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥))))) |
| 54 | 50, 53 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) →
(((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧))) ↔
((normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥)))))) |
| 55 | 54 | rspcev 3622 |
. . . . . . . . . . . . . 14
⊢ ((((1 /
(normℎ‘𝑥)) ·ℎ 𝑥) ∈ ℋ ∧
((normℎ‘((1 / (normℎ‘𝑥))
·ℎ 𝑥)) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝑥)) ·ℎ 𝑥))))) → ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧)))) |
| 56 | 37, 44, 48, 55 | syl12anc 837 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧)))) |
| 57 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢
(normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) ∈ V |
| 58 | | eqeq1 2741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 =
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) → (𝑦 = (normℎ‘(𝑇‘𝑧)) ↔ (normℎ‘((1
/ (normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧)))) |
| 59 | 58 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 =
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) →
(((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧))) ↔
((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧))))) |
| 60 | 59 | rexbidv 3179 |
. . . . . . . . . . . . . 14
⊢ (𝑦 =
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) → (∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧))) ↔ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧))))) |
| 61 | 57, 60 | elab 3679 |
. . . . . . . . . . . . 13
⊢
((normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))} ↔ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) = (normℎ‘(𝑇‘𝑧)))) |
| 62 | 56, 61 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}) |
| 63 | | supxrub 13366 |
. . . . . . . . . . . 12
⊢ (({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))} ⊆ ℝ* ∧
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ∈ {𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, <
)) |
| 64 | 34, 62, 63 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, <
)) |
| 65 | 64 | adantll 714 |
. . . . . . . . . 10
⊢
((((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, <
)) |
| 66 | | nmopval 31875 |
. . . . . . . . . . . . . 14
⊢ (𝑇: ℋ⟶ ℋ →
(normop‘𝑇)
= sup({𝑦 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, <
)) |
| 67 | 15, 66 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(normop‘𝑇) = sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, <
) |
| 68 | 67 | eqeq1i 2742 |
. . . . . . . . . . . 12
⊢
((normop‘𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, < ) =
0) |
| 69 | 68 | biimpi 216 |
. . . . . . . . . . 11
⊢
((normop‘𝑇) = 0 → sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, < ) =
0) |
| 70 | 69 | ad2antrr 726 |
. . . . . . . . . 10
⊢
((((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇‘𝑥) ≠ 0ℎ) →
sup({𝑦 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑦 = (normℎ‘(𝑇‘𝑧)))}, ℝ*, < ) =
0) |
| 71 | 65, 70 | breqtrd 5169 |
. . . . . . . . 9
⊢
((((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ 0) |
| 72 | | normcl 31144 |
. . . . . . . . . . . 12
⊢ (((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥)) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ∈ ℝ) |
| 73 | 25, 72 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ∈ ℝ) |
| 74 | | 0re 11263 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 75 | | lenlt 11339 |
. . . . . . . . . . 11
⊢
(((normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((normℎ‘((1 /
(normℎ‘𝑥)) ·ℎ (𝑇‘𝑥))) ≤ 0 ↔ ¬ 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 76 | 73, 74, 75 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ≠ 0ℎ) →
((normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ 0 ↔ ¬ 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 77 | 76 | adantll 714 |
. . . . . . . . 9
⊢
((((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇‘𝑥) ≠ 0ℎ) →
((normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))) ≤ 0 ↔ ¬ 0 <
(normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 78 | 71, 77 | mpbid 232 |
. . . . . . . 8
⊢
((((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) ∧ (𝑇‘𝑥) ≠ 0ℎ) → ¬ 0
< (normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥)))) |
| 79 | 78 | ex 412 |
. . . . . . 7
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ≠ 0ℎ → ¬ 0
< (normℎ‘((1 / (normℎ‘𝑥))
·ℎ (𝑇‘𝑥))))) |
| 80 | 30, 79 | pm2.65d 196 |
. . . . . 6
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ¬ (𝑇‘𝑥) ≠ 0ℎ) |
| 81 | | nne 2944 |
. . . . . 6
⊢ (¬
(𝑇‘𝑥) ≠ 0ℎ ↔ (𝑇‘𝑥) = 0ℎ) |
| 82 | 80, 81 | sylib 218 |
. . . . 5
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = 0ℎ) |
| 83 | | ho0val 31769 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → (
0hop ‘𝑥) =
0ℎ) |
| 84 | 83 | adantl 481 |
. . . . 5
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ( 0hop
‘𝑥) =
0ℎ) |
| 85 | 82, 84 | eqtr4d 2780 |
. . . 4
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = ( 0hop ‘𝑥)) |
| 86 | 85 | ralrimiva 3146 |
. . 3
⊢
((normop‘𝑇) = 0 → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ( 0hop ‘𝑥)) |
| 87 | | ffn 6736 |
. . . . 5
⊢ (𝑇: ℋ⟶ ℋ →
𝑇 Fn
ℋ) |
| 88 | 15, 87 | ax-mp 5 |
. . . 4
⊢ 𝑇 Fn ℋ |
| 89 | | ho0f 31770 |
. . . . 5
⊢
0hop : ℋ⟶ ℋ |
| 90 | | ffn 6736 |
. . . . 5
⊢ (
0hop : ℋ⟶ ℋ → 0hop Fn
ℋ) |
| 91 | 89, 90 | ax-mp 5 |
. . . 4
⊢
0hop Fn ℋ |
| 92 | | eqfnfv 7051 |
. . . 4
⊢ ((𝑇 Fn ℋ ∧
0hop Fn ℋ) → (𝑇 = 0hop ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ( 0hop ‘𝑥))) |
| 93 | 88, 91, 92 | mp2an 692 |
. . 3
⊢ (𝑇 = 0hop ↔
∀𝑥 ∈ ℋ
(𝑇‘𝑥) = ( 0hop ‘𝑥)) |
| 94 | 86, 93 | sylibr 234 |
. 2
⊢
((normop‘𝑇) = 0 → 𝑇 = 0hop ) |
| 95 | | fveq2 6906 |
. . 3
⊢ (𝑇 = 0hop →
(normop‘𝑇)
= (normop‘ 0hop )) |
| 96 | | nmop0 32005 |
. . 3
⊢
(normop‘ 0hop ) = 0 |
| 97 | 95, 96 | eqtrdi 2793 |
. 2
⊢ (𝑇 = 0hop →
(normop‘𝑇)
= 0) |
| 98 | 94, 97 | impbii 209 |
1
⊢
((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) |