MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Structured version   Visualization version   GIF version

Theorem cardlim 9661
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))

Proof of Theorem cardlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3943 . . . . . . . . . . 11 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ suc 𝑥))
21biimpd 228 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → ω ⊆ suc 𝑥))
3 limom 7703 . . . . . . . . . . . 12 Lim ω
4 limsssuc 7672 . . . . . . . . . . . 12 (Lim ω → (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥))
53, 4ax-mp 5 . . . . . . . . . . 11 (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥)
6 infensuc 8891 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
76ex 412 . . . . . . . . . . 11 (𝑥 ∈ On → (ω ⊆ 𝑥𝑥 ≈ suc 𝑥))
85, 7syl5bir 242 . . . . . . . . . 10 (𝑥 ∈ On → (ω ⊆ suc 𝑥𝑥 ≈ suc 𝑥))
92, 8sylan9r 508 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ suc 𝑥))
10 breq2 5074 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
1110adantl 481 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
129, 11sylibrd 258 . . . . . . . 8 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴)))
1312ex 412 . . . . . . 7 (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴))))
1413com3r 87 . . . . . 6 (ω ⊆ (card‘𝐴) → (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴))))
1514imp 406 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴)))
16 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
1716sucid 6330 . . . . . . . . 9 𝑥 ∈ suc 𝑥
18 eleq2 2827 . . . . . . . . 9 ((card‘𝐴) = suc 𝑥 → (𝑥 ∈ (card‘𝐴) ↔ 𝑥 ∈ suc 𝑥))
1917, 18mpbiri 257 . . . . . . . 8 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘𝐴))
20 cardidm 9648 . . . . . . . 8 (card‘(card‘𝐴)) = (card‘𝐴)
2119, 20eleqtrrdi 2850 . . . . . . 7 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘(card‘𝐴)))
22 cardne 9654 . . . . . . 7 (𝑥 ∈ (card‘(card‘𝐴)) → ¬ 𝑥 ≈ (card‘𝐴))
2321, 22syl 17 . . . . . 6 ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴))
2423a1i 11 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴)))
2515, 24pm2.65d 195 . . . 4 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ¬ (card‘𝐴) = suc 𝑥)
2625nrexdv 3197 . . 3 (ω ⊆ (card‘𝐴) → ¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥)
27 peano1 7710 . . . . . 6 ∅ ∈ ω
28 ssel 3910 . . . . . 6 (ω ⊆ (card‘𝐴) → (∅ ∈ ω → ∅ ∈ (card‘𝐴)))
2927, 28mpi 20 . . . . 5 (ω ⊆ (card‘𝐴) → ∅ ∈ (card‘𝐴))
30 n0i 4264 . . . . 5 (∅ ∈ (card‘𝐴) → ¬ (card‘𝐴) = ∅)
31 cardon 9633 . . . . . . . . 9 (card‘𝐴) ∈ On
3231onordi 6356 . . . . . . . 8 Ord (card‘𝐴)
33 ordzsl 7667 . . . . . . . 8 (Ord (card‘𝐴) ↔ ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3432, 33mpbi 229 . . . . . . 7 ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))
35 3orass 1088 . . . . . . 7 (((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)) ↔ ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))))
3634, 35mpbi 229 . . . . . 6 ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3736ori 857 . . . . 5 (¬ (card‘𝐴) = ∅ → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3829, 30, 373syl 18 . . . 4 (ω ⊆ (card‘𝐴) → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3938ord 860 . . 3 (ω ⊆ (card‘𝐴) → (¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 → Lim (card‘𝐴)))
4026, 39mpd 15 . 2 (ω ⊆ (card‘𝐴) → Lim (card‘𝐴))
41 limomss 7692 . 2 (Lim (card‘𝐴) → ω ⊆ (card‘𝐴))
4240, 41impbii 208 1 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  ωcom 7687  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-card 9628
This theorem is referenced by:  infxpenlem  9700  alephislim  9770  cflim2  9950  winalim  10382  gruina  10505
  Copyright terms: Public domain W3C validator