MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Structured version   Visualization version   GIF version

Theorem cardlim 9932
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))

Proof of Theorem cardlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3976 . . . . . . . . . . 11 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ suc 𝑥))
21biimpd 229 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → ω ⊆ suc 𝑥))
3 limom 7861 . . . . . . . . . . . 12 Lim ω
4 limsssuc 7829 . . . . . . . . . . . 12 (Lim ω → (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥))
53, 4ax-mp 5 . . . . . . . . . . 11 (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥)
6 infensuc 9125 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
76ex 412 . . . . . . . . . . 11 (𝑥 ∈ On → (ω ⊆ 𝑥𝑥 ≈ suc 𝑥))
85, 7biimtrrid 243 . . . . . . . . . 10 (𝑥 ∈ On → (ω ⊆ suc 𝑥𝑥 ≈ suc 𝑥))
92, 8sylan9r 508 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ suc 𝑥))
10 breq2 5114 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
1110adantl 481 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
129, 11sylibrd 259 . . . . . . . 8 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴)))
1312ex 412 . . . . . . 7 (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴))))
1413com3r 87 . . . . . 6 (ω ⊆ (card‘𝐴) → (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴))))
1514imp 406 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴)))
16 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
1716sucid 6419 . . . . . . . . 9 𝑥 ∈ suc 𝑥
18 eleq2 2818 . . . . . . . . 9 ((card‘𝐴) = suc 𝑥 → (𝑥 ∈ (card‘𝐴) ↔ 𝑥 ∈ suc 𝑥))
1917, 18mpbiri 258 . . . . . . . 8 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘𝐴))
20 cardidm 9919 . . . . . . . 8 (card‘(card‘𝐴)) = (card‘𝐴)
2119, 20eleqtrrdi 2840 . . . . . . 7 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘(card‘𝐴)))
22 cardne 9925 . . . . . . 7 (𝑥 ∈ (card‘(card‘𝐴)) → ¬ 𝑥 ≈ (card‘𝐴))
2321, 22syl 17 . . . . . 6 ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴))
2423a1i 11 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴)))
2515, 24pm2.65d 196 . . . 4 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ¬ (card‘𝐴) = suc 𝑥)
2625nrexdv 3129 . . 3 (ω ⊆ (card‘𝐴) → ¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥)
27 peano1 7868 . . . . . 6 ∅ ∈ ω
28 ssel 3943 . . . . . 6 (ω ⊆ (card‘𝐴) → (∅ ∈ ω → ∅ ∈ (card‘𝐴)))
2927, 28mpi 20 . . . . 5 (ω ⊆ (card‘𝐴) → ∅ ∈ (card‘𝐴))
30 n0i 4306 . . . . 5 (∅ ∈ (card‘𝐴) → ¬ (card‘𝐴) = ∅)
31 cardon 9904 . . . . . . . . 9 (card‘𝐴) ∈ On
3231onordi 6448 . . . . . . . 8 Ord (card‘𝐴)
33 ordzsl 7824 . . . . . . . 8 (Ord (card‘𝐴) ↔ ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3432, 33mpbi 230 . . . . . . 7 ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))
35 3orass 1089 . . . . . . 7 (((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)) ↔ ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))))
3634, 35mpbi 230 . . . . . 6 ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3736ori 861 . . . . 5 (¬ (card‘𝐴) = ∅ → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3829, 30, 373syl 18 . . . 4 (ω ⊆ (card‘𝐴) → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3938ord 864 . . 3 (ω ⊆ (card‘𝐴) → (¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 → Lim (card‘𝐴)))
4026, 39mpd 15 . 2 (ω ⊆ (card‘𝐴) → Lim (card‘𝐴))
41 limomss 7850 . 2 (Lim (card‘𝐴) → ω ⊆ (card‘𝐴))
4240, 41impbii 209 1 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  cfv 6514  ωcom 7845  cen 8918  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-er 8674  df-en 8922  df-dom 8923  df-card 9899
This theorem is referenced by:  infxpenlem  9973  alephislim  10043  cflim2  10223  winalim  10655  gruina  10778
  Copyright terms: Public domain W3C validator