MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Structured version   Visualization version   GIF version

Theorem cardlim 9925
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))

Proof of Theorem cardlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3973 . . . . . . . . . . 11 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ suc 𝑥))
21biimpd 229 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → ω ⊆ suc 𝑥))
3 limom 7858 . . . . . . . . . . . 12 Lim ω
4 limsssuc 7826 . . . . . . . . . . . 12 (Lim ω → (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥))
53, 4ax-mp 5 . . . . . . . . . . 11 (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥)
6 infensuc 9119 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
76ex 412 . . . . . . . . . . 11 (𝑥 ∈ On → (ω ⊆ 𝑥𝑥 ≈ suc 𝑥))
85, 7biimtrrid 243 . . . . . . . . . 10 (𝑥 ∈ On → (ω ⊆ suc 𝑥𝑥 ≈ suc 𝑥))
92, 8sylan9r 508 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ suc 𝑥))
10 breq2 5111 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
1110adantl 481 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
129, 11sylibrd 259 . . . . . . . 8 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴)))
1312ex 412 . . . . . . 7 (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴))))
1413com3r 87 . . . . . 6 (ω ⊆ (card‘𝐴) → (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴))))
1514imp 406 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴)))
16 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
1716sucid 6416 . . . . . . . . 9 𝑥 ∈ suc 𝑥
18 eleq2 2817 . . . . . . . . 9 ((card‘𝐴) = suc 𝑥 → (𝑥 ∈ (card‘𝐴) ↔ 𝑥 ∈ suc 𝑥))
1917, 18mpbiri 258 . . . . . . . 8 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘𝐴))
20 cardidm 9912 . . . . . . . 8 (card‘(card‘𝐴)) = (card‘𝐴)
2119, 20eleqtrrdi 2839 . . . . . . 7 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘(card‘𝐴)))
22 cardne 9918 . . . . . . 7 (𝑥 ∈ (card‘(card‘𝐴)) → ¬ 𝑥 ≈ (card‘𝐴))
2321, 22syl 17 . . . . . 6 ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴))
2423a1i 11 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴)))
2515, 24pm2.65d 196 . . . 4 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ¬ (card‘𝐴) = suc 𝑥)
2625nrexdv 3128 . . 3 (ω ⊆ (card‘𝐴) → ¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥)
27 peano1 7865 . . . . . 6 ∅ ∈ ω
28 ssel 3940 . . . . . 6 (ω ⊆ (card‘𝐴) → (∅ ∈ ω → ∅ ∈ (card‘𝐴)))
2927, 28mpi 20 . . . . 5 (ω ⊆ (card‘𝐴) → ∅ ∈ (card‘𝐴))
30 n0i 4303 . . . . 5 (∅ ∈ (card‘𝐴) → ¬ (card‘𝐴) = ∅)
31 cardon 9897 . . . . . . . . 9 (card‘𝐴) ∈ On
3231onordi 6445 . . . . . . . 8 Ord (card‘𝐴)
33 ordzsl 7821 . . . . . . . 8 (Ord (card‘𝐴) ↔ ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3432, 33mpbi 230 . . . . . . 7 ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))
35 3orass 1089 . . . . . . 7 (((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)) ↔ ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))))
3634, 35mpbi 230 . . . . . 6 ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3736ori 861 . . . . 5 (¬ (card‘𝐴) = ∅ → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3829, 30, 373syl 18 . . . 4 (ω ⊆ (card‘𝐴) → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3938ord 864 . . 3 (ω ⊆ (card‘𝐴) → (¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 → Lim (card‘𝐴)))
4026, 39mpd 15 . 2 (ω ⊆ (card‘𝐴) → Lim (card‘𝐴))
41 limomss 7847 . 2 (Lim (card‘𝐴) → ω ⊆ (card‘𝐴))
4240, 41impbii 209 1 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  cfv 6511  ωcom 7842  cen 8915  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-er 8671  df-en 8919  df-dom 8920  df-card 9892
This theorem is referenced by:  infxpenlem  9966  alephislim  10036  cflim2  10216  winalim  10648  gruina  10771
  Copyright terms: Public domain W3C validator